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Abstract

Biases in research and development create a mismatch between the attributes of new
agricultural technology and the preferences of low-income farmers. In this paper, I esti-
mate the impact of this mismatch on farmers’ adoption of new drought-resistant seeds.
Using a randomized controlled trial in Costa Rica, I recreated counterfactual scenarios
for innovators’ seed development decisions by offering some farmers seed matching their
preferences and others a seed variety chosen by crop scientists as a blanket recommen-
dation. Results show that mismatch has a significant impact on adoption, with 41%
lower uptake among farmers who were offered the recommended new seed. This gap
was larger for farms located farther from the research lab where the new seeds were
developed and persisted even in areas with drought exposure. Moreover, the new seeds
were 31% more productive among farmers who adopted their preferred variety. To
explain these findings, I propose a model where research constraints limit innovators’
ability to account for farmer heterogeneity. Matching new seeds to farmer preferences
relaxes those constraints and increases productivity by enabling better adaptation to
specific farm-level conditions, which are usually private information unknown to inno-
vators.
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1 Introduction

The current growth rates of crop yields are insufficient to meet the increasing global demand

for agricultural products, making innovation in agriculture essential to economic develop-

ment, global food security, and climate resilience (Fuglie et al., 2019; Ray et al., 2013).

However, low-income farmers are still reluctant to adopt seemingly profitable new inputs

and practices. Extensive research has studied this issue, focusing primarily on demand-side

factors limiting farmers’ technology choices (see Magruder, 2018; Foster and Rosenzweig,

2010; Sunding and Zilberman, 2001; Feder et al., 1985). Addressing these constraints has

also become a policy priority in the developing world, including annual investments exceed-

ing 14 billion USD in input subsidies, often provided as transfers of chemical fertilizers and

improved seeds (Searchinger et al., 2020; OECD, 2020; FAO, 2021). In contrast, we know

much less about the supply side of this technology adoption puzzle (Suri, 2011), and although

it is often assumed that these technologies benefit most farmers, several examples suggest

otherwise.1

An overlooked aspect of this problem is that agricultural innovations are rarely tailored

to the needs of low-income and small-scale farmers, who constitute a significant portion

of agricultural production (Lowder et al., 2016). Biases in research and development tend

to favor high-income farmers, large-scale production, and certain regions (Chambers and

Ghildyal, 1985; Stewart, 1977; Ruttan and Hayami, 1973). For example, research disparities

drive the diffusion of crop varieties that work well in high-income countries but are less

productive elsewhere (Moscona and Sastry, 2021). Other instances demostrate that the

expected benefits of agricultural innovation are indeed realized when new technology is well-

suited to farmers’ local conditions (Bird et al., 2022; Emerick et al., 2016). However, when

innovators’ decisions do not reflect farmers’ preferences, there may be a large gap between the

supply and demand of agricultural innovations. This technological mismatch can significantly

hinder the modernization of agriculture, especially in contexts without market competition

to weed out inappropriate technology.

In this paper, I set out to answer two questions. First, I estimate how technological

mismatch affects the adoption and productivity of improved crop varieties in a developing

country, considering the economic and institutional constraints that can impede innovation.

Second, I investigate factors intrinsic to agricultural biotechnology development that lead

1Differences in adoption due to plot, farm, and farmer-level characteristics suggest that improved agri-
cultural technology may not always be profitable or more productive under heterogeneous conditions (Suri,
2011; Marenya and Barrett, 2009). Yield improvements of new crop varieties are often overestimated in
agronomic trials (Laajaj et al., 2020). Lemon technologies, such as low-quality fertilizers, can lower farmers’
returns (Bold et al., 2017), but accurate quality estimates are needed to prevent input quality misattribution
(Michelson et al., 2021).
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to technological mismatch. Specifically, I focus on innovators’ ability to incorporate farmer

heterogeneity into their work to create technologies that meet farmers’ needs.

To answer these questions, I conducted a randomized controlled trial in Costa Rica.2 It

is common for plant breeding programs to release a single new variety to supply a large

and heterogeneous group of farmers. When seed markets are informal or incomplete, or for

minor and orphan crops (Naylor et al., 2004), public sector seed releases are commonly the

only new crop varieties available to farmers. A key challenge is that we only observe the

varieties that breeders release, not the counterfactual varieties they may have developed had

they been able to properly match farmers’ preferences. To address this issue, I conducted

a two-stage randomized evaluation, in which I experimentally vary farmer access to seed

varieties that match their preferences.

The two-stage experimental design was inspired by personalized treatment assignments.

In the first stage, a sample of 800 small and medium-scale farmers was randomly selected

using administrative records.3 Half of these farmers participated in agronomic trials designed

to test five new drought-resistant bean varieties in their fields. With no irrigation systems in

place, poor farmers rely on rain to water their crops, which makes weather shocks a persistent

production risk. This and other key idiosyncratic characteristics of farmers are unobserved or

ignored by innovators, who for the most part develop varieties under controlled experimental

conditions. The agronomic trials allowed me to elicit farmers’ preferences over the new seed

varieties and estimate their performance under a greater diversity of conditions, which is

usually private information unknown to plant breeders.

The second stage recreated counterfactual scenarios for breeders’ release decisions. Farm-

ers were offered the chance to buy a fixed quantity of seed of a single new variety. I ran-

domized these offers across three treatment arms and a control group. First, farmers in

the Farmer’s Choice treatment were offered their most preferred variety, based on their ex-

perience during the agronomic trials. Second, farmers in the Breeders’ Choice treatment

participated in the agronomic trials but received an unknown new variety selected by the

breeders as a blanket recommendation for all farmers. The recommendation was made by

crop scientists from the national breeding program following a process analogous to the

actual release of new varieties in Costa Rica.4 The third treatment arm is composed of

farmers who did not participate in the agronomic trials but also received the offer of the

2Protocols for this study were reviewed by the Institutional Review Board for Human Participants at
Cornell University (#2106010430). The randomized evaluation was included in the American Economic
Association RCT registry in November 2021, prior to the main intervention (AEARCTR-0008452).

3I use data from the National Productive Council of Costa Rica (CNP), which is the official registrar in
charge of counting and tracking small- and medium-scale farmers every year.

4In March 2023, the Ministry of Agriculture of Costa Rica released the seed variety that was used as the
blanket recommendation in this study. See press release here for more information (in Spanish).
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recommended new variety. This Reference Group represents the business-as-usual scenario,

in which farmers have no prior experience with the new crop varieties released by breeders.

Finally, a pure control group of farmers did not participate in the first stage trials or receive

an offer of a new seed variety in the second stage.

I compare take-up rates across experimental arms to estimate the impact of mismatch

on adoption. The treatment effects reveal that the attributes-preferences mismatch signif-

icantly reduces farmers’ adoption of new technology. Take-up among farmers offered the

recommended new variety is 41% lower than among those who received seed offers matching

their stated preferences. This difference suggests a significant gap between farmers’ prefer-

ences and the available supply of new varieties. This result is supported by farmers’ stated

preferences, indicating that for a large percentage of farmers the new seeds are considered

inferior technology (i.e., dominated by the current seed variety). Moreover, differences in

take-up rates across new varieties also suggest that the blanket recommendation promoted

purchases of a variety that may be inappropriate for one in six adopters.

The mismatch effects on adoption hold after experimentally controlling for well-known

adoption frictions.5 I also rule out demand-side explanatory and confounding factors that

may predict differential take-up independently of the stage 2 treatment. First, I find that

stage 1 productivity alone does not predict adoption. Yield comparisons using data from

baseline surveys and the evaluation plots show a similar yield distribution between adopters

and non-adopters. Second, the demand for higher quality seed is correlated with higher

adoption for some farmers but no all, especially in places where there is increased appetite

for replacing the dominant bean variety.

In addition, participation in the agronomic trials, reflected in the comparison of the

Breeders’ Choice with Reference groups, had no significant impact on take-up. This implies

there is no evidence of farmers trading off first-hand experience in favor of expert advice (i.e.,

varietal recommendation). Furthermore, I examine farmers’ beliefs and find null effects on

take-up from baseline yield expectations, and no evidence of biased beliefs about performance

after the agronomic trials in stage 1.6

To explain how mismatch affects adoption, I propose a model where research constraints

limit innovators’ ability to account for farmer heterogeneity across locations. Ecological

and environmental specificity affect crop varieties’ performance. Now, suppose innovators

cannot capture that heterogeneity, or there are no mechanisms motivating them to internalize

5These factors include liquidity constraints (Karlan et al., 2014), heterogeneous access to the technology
(Suri, 2011), input quality (Bold et al., 2017), and limited-attention learning (Hanna et al., 2014).

6In addition to farmers’ beliefs, managerial skills and the quality of complementary inputs may contribute
to the issue of properly attributing the new varieties performance (Barrett et al., 2004). These factors were
controlled for in the design of the experiment (see Section 4).
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it in their decision-making process. Then, new technologies will only be adapted to certain

locations depending on innovators’ research effort. I find evidence consistent with the idea

that breeders exert more effort to learn about proximate farmers’ conditions than others.

Results show no mismatch effect on farmers located closer to the lab and field station where

the varieties were developed and tested, followed by increasingly negative mismatch effects on

take-up for farther away farmers. These findings suggest that mismatch increases with higher

travel times from the lab to farmers’ locations, which proxies for research effort towards the

new seeds’ adaptation to the local conditions of farmers.

Other results based on weather variability suggest that innovators overvalue key technol-

ogy features. I find that improved drought tolerance –the main trait of the new varieties–

does not reduce the mismatch effect on adoption. We would expect farmers in drought-

prone areas, particularly those in the Breeder’s Choice group, to be more inclined to adopt

drought-resistant seeds due to their expected competitive advantage over current varieties.

However, I observe no smaller mismatch effects on adoption among farmers who experienced

pre-intervention droughts, greater drought-related losses, or longer dry spells.

The model also suggests that farmers who adopt the appropriate new seed should see

higher productivity gains. I use post-intervention data to compare, within the same farm,

plots planted with the new seed versus plots planted with current varieties in the market.7

Results show no overall impact of adoption on yields. However, by decomposing the effect

between treatment groups, I find positive impact of effect on yields among farmers who were

offered a new variety that matched their preferences. Results indicate 3.75 quintals (31%)

higher yields relative to bean plots planted with current varieties. Productivity levels do not

change for farmers who adopted the recommended variety.8

The adoption effect on yields is not driven by input intensification but by a reduction of

output losses. Conditional on plot size, I find no increase in fertilizer use or seed quantity

used per plot. On the contrary, labor use is lower in the adoption plots. The impact on

yield is instead explained by a significant reduction in output losses from biotic and weather

shocks, indicating better adaptation to local conditions among adopters in the Farmers’

Choice treatment. Matching farmers’ preferences with the appropriate new seed variety

reduced output losses by 9 percentage points, which translates to approximately 3 quintals

7To control for plot selection issues, in which farmers plant the new varieties in systematically worse or
better land (Emerick et al., 2016; Barrett et al., 2004), farmers were asked to rank all plots in their farm to
capture their perceived plot quality. Farm level fixed effects are included to control for potential endogeneity.
In addition, I use data from the pure control group to improve statistical power and to compare adopters
with a randomly selected group of farmers.

8An important caveat is that the plots planted with the new seeds are considerably smaller. The produc-
tivity estimates are extrapolated to be comparable with the yield from regular yield, which are are measured
in quintals per hectare.
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on average. This reduction is comparable to the yield improvement resulting from adopting

the preferred new seed.

Contribution to the literature

This paper contributes to the literature in three ways. First, it expands recent research

on supply-side constraints affecting agricultural technology adoption (Dar et al., 2024; Bird

et al., 2022; Emerick et al., 2016; Suri, 2011). Economists have predominantly studied farm-

ers’ failure to adopt new technology, including demand-side factors such as time and risk

preferences (Liu, 2013; Duflo et al., 2011), learning failures (Hanna et al., 2014; Conley and

Udry, 2010), and limited credit and insurance access (Karlan et al., 2014). Here I test an

alternative explanation, one that is intrinsic to the development of improved agricultural

technology –a process that remains poorly understood in the context of lower-income coun-

tries.

I argue that research constraints limit innovators’ capacity to develop technologies tai-

lored to farmers’ needs. This explanation differs from cases where adverse selection crowds

out adoption due to input quality concerns or misattribution (Hoel et al., 2024; Michelson

et al., 2021). For example, biological constraints limit the protection that new climate-stress-

resistant crop varieties can provide (Boucher et al., 2021), or heterogeneous agronomic con-

ditions that determine fertilizer performance (Marenya and Barrett, 2009). These nuanced,

often location-specific factors are difficult for resource-constrained innovators and suppliers

to accurately assess. Furthermore, addressing these constraints often requires investments

in localized research or multiple technology variants, which can be prohibitively expensive.

This paper suggests that one-size-fits-all strategies common to public agricultural R&D,

which typically release only a single (or very few) varieties to farmers, contribute to techno-

logical mismatch. The unaccounted farmer heterogeneity in preferences significantly reduces

the productivity of improved seeds as a result. In a similar vein, Suri (2011) shows that

heterogeneous costs of accessing new technology can explain the observed patterns of agri-

cultural technology adoption in developing countries. Moreover, recent evidence suggests

that information frictions in government approaches to agricultural extension play an im-

portant role in the slow diffusion of new crop varieties (Dar et al., 2024). Higher transaction

costs, such as those due to poor infrastructure and information, create variability in the net

returns to adoption. However, a key difference is that these costs are not intrinsic to the

technology and, therefore, do not affect its innate performance.

Second, this paper also contributes to the literature on innovation by showing that tech-

nological mismatch negatively affects technology adoption in agriculture, particularly among

small-scale farmers in the tropics. This finding is consistent with the inappropriate technol-

ogy hypothesis (Stewart, 1977), which states that technology developed for research-intensive
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countries is less productive in other places. This paper provides direct causal evidence that

the mismatch between farmer preferences and technology attributes discourages adoption of

improved biotechnology, as farmers may find new alternatives less suitable for their specific

conditions.

My results highlight the importance of adaptation efforts by local innovators as a medi-

ating factor of technology inappropriateness. This paper shows that differences in location-

specific conditions can lead to mismatch even within a single country. Compelling historical

evidence by Moscona and Sastry (2021) suggests that cross-country transfers of inappropri-

ate plant germplasm used by crop scientists can reduce crop productivity. An important

consideration is that germplasm transfers not always result in new crop variety releases.9

The quantity and quality of these releases are determined by research efforts to adapt im-

ported genetic materials to local conditions. These efforts, in turn, primarily depend on

researchers’ incentives and capabilities. Therefore, the net impact of inappropriate plant

varieties is perhaps more significant when local adaptation efforts by national plant breeding

programs or seed companies are rare or unsuccessful.

In addition, this case is different to the type of mismatch caused by differences in the skills

supply between underdeveloped and developed countries (Acemoglu and Zilibotti, 2001).

This paper demonstrates that once research constraints are relaxed, by revealing and match-

ing farmers’ preferences, significant productivity gains can be achieved by local innovators.

This finding is consistent with evidence showing that crop improvement investments tailored

to specific agroecological niches contribute to more productive and profitable farms (Bird

et al., 2022).

Finally, this paper contributes to the literature on learning and its role in the development

of new technology (Parente, 1994). Many examples, from the Green Revolution to modern

genetically modified crops, show that plant breeders and crop scientists can produce deeply

transformative technology. This process requires innovators to learn what technology works

best in farmers’ fields. Research in economics has mainly focused on farmers’ learning and

their returns to experimentation (Foster and Rosenzweig, 1995; Conley and Udry, 2010;

Hanna et al., 2014; Maertens et al., 2020; Hoel et al., 2024). However, I find no effect of farmer

participation in agronomic trials on adoption, even after controlling for differences in farmers’

learning about relevant attributes of the technology and performance misattribution. These

results suggest that experimentation with farmers is more valuable when innovators’ decisions

and the resulting technologies enable farmers to reach their location-specific technological

frontier.

9For example, 107 genetic lines were used as input to develop the five candidates evaluated in this study,
ultimately leading to the release of a single new crop variety.
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The rest of this paper is organized as follows. Section 2 provides background information

about the study setting and crop improvement research in developing countries. Section 3

presents the theoretical model describing the production and adoption of new technology.

Section 4 details the experimental design. The next sections report the main results on

preferences (section 5), choices (section 6) and outcomes (section 7). Section 8 empirically

tests for potential mechanisms explaining the treatment effects on adoption. Finally, Section

9 includes a discussion of the results and broader implications.

2 Background

2.1 Research Constraints in Crop Improvement

Crop improvement is fundamental to ensuring food security, particularly in developing coun-

tries where agriculture plays a central role in the livelihoods of a significant portion of the

population (Itam et al., 2023). Despite advancements in scientific research, crop scientists

face constraints that impede their ability to improve crop yields, farm profitability, and

nutritional content. Understanding and overcoming these constraints is a steppingstone for

sustainable agricultural development, which largely requires promoting new technologies that

farmers are willing to adopt.

One of the major constraints is that investments in crop research and development (R&D)

are highly concentrated in funding sources, geographic regions, and types of crops (Occelli

et al., 2024). Public spending accounts for 75% of global agricultural R&D investment,

driven primarily by expenditures in China, India, and a few middle-income countries (Bein-

tema et al., 2020). Although private investment is slowly growing (Pardey et al., 2016), the

majority of global agricultural R&D spending sources are governments, with little occurring

in low-income countries. Moreover, private investment is also concentrated in internationally

traded crops, including major grains such as maize, rice, and wheat. Consequently, public

agricultural R&D often serves populations and crops underserved by private companies. In

regions with informal seed systems and incomplete agricultural markets, national agricul-

tural research institutes and state-owned enterprises are typically the main suppliers of crop

varieties, particularly for orphan crops that receive little private investment.

In addition, plant breeders face technical constraints that limit what specific traits to

improve and how much to improve them. Biological constraints, ecological specificity, or

heterogeneous agronomic conditions determine in large part the performance of agricul-

tural biotechnology (Moscona and Sastry, 2021; Marenya and Barrett, 2009). For instance,

Boucher et al. (2021) suggests that these constraints lead to limited protection by stress-

tolerant varieties, a sort of “single peril coverage” against weather variability.
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These constraints do not necessarily imply that crop scientists in these contexts are

unable to produce better new technology. Instead, the key trade-off here is that innovators

may prioritize certain breeding objectives, as a response to those such restrictions. This

situation is particularly relevant in cases of high heterogeneity of conditions and preferences,

and when innovators face little competitive pressure, as is often the case in seed markets in

developing countries. As a result, these innovators may have a limited capacity to develop,

test, and produce varieties tailored to farmers’ local conditions.
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Figure 1: This scatter plot compares the number of released varieties per year and country
versus the national agricultural research expenditure as a share of GDP. The figure includes data
from 38 countries in Africa and Asia for 21 crop varieties released between 1981 and 2014. Released
varieties includes information from private and public varietal releases, combining information
from three CGIAR projects: DIIVA (Africa), TRIVSA (South Asia), and ASTI’s SIAC (East
Asia). Expenditure is calculated as the share of agricultural GDP data come from ASTI Network.

Although there is no systematic data about released varieties in developing countries, the

information available suggests that the supply of new crop varieties in developing countries is

limited. As shown in figure 1, the number of released varieties by plant breeding programs is

small compared to the diverse set of farmers’ conditions and preferences they supply. Figure

1 plots the number of released varieties per country-year versus the spending in agricultural

research as a percentage of GDP for selected low- and middle-income countries between 1985
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and 2014.10

The data show that most countries release very few crop varieties per year. While the

mean number of releases is 5 varieties, the median value is a single variety per year. Most

of the time (percentile 90) only 15 varieties are released for all 21 crops in the data – much

less than one new variety per crop. Moreover, whenever there are many released varieties,

the share of public spending is lower, suggesting more efficient public research investment,

or simply that private research contributes to a larger supply of new varieties.

2.2 Study setting

Globally, beans are an important staple food and, along with lentils and other high-protein

grains, are often referred to as the poor man’s meat. Common beans are particularly impor-

tant in the Costa Rican economy and diet. Nearly every meal in the country includes rice

and beans, making Costa Rica one of the top bean consumers per capita in the world (Helgi

Library, 2021). Most of the beans produced in Costa Rica are grown by small-scale farmers,

many of whom live in poor conditions. These farmers benefit from the stable demand for

beans and the crop’s short growing cycle, which helps fund the production of major crops

such as maize and rice.

Nevertheless, the overall planted area and production of beans in Costa Rica have de-

creased substantially in the last decade, mainly due to increased competition in international

markets. Currently, Costa Rica imports about three-quarters of the domestic demand for

black and red beans (Roman, 2020). To address this issue, crop scientists from Costa Rica’s

National Plant Breeding Program have introduced improved bean varieties to tackle low

yields and improve biotic resistance.

Ten common bean varieties were released in Costa Rica in the last 25 years.11 All ten

were public releases developed to supply farmers nationwide. The diffusion of the varieties

has been limited, with modest uptake by farmers (less than 50% in all cases) and only 40%

of cropped areas using these varieties up to six years after their release (Fonseca and Porras,

2006). Today, four of the ten varieties released in the last three decades only cover half of the

planted areas.12 The rest are no longer being grown by farmers for commercial purposes. For

10This figure combines data from research initiatives by the Consultative Group on International Agricul-
tural Research (CGIAR) intended to track released varieties of 21 crops in Africa and Asia, and investments
in agricultural research and development globally. Data for other regions, including Latin America was not
available.

11These include both red and black varieties. The red bean varieties are Bribŕı (2000), Cabécar (2003),
Telire (2004), Curré (2007), Gibre (2006), Diquis (2009), and Tayńı (2012). The black bean varieties are
UCR-55 (2000), Matambú (2013), and Namb́ı (2016).

12Baseline data from a nationally representative survey conducted for this study shows that 55% of plots
are planted using Cabécar, Nambi, Matambú, or Tayńı.
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example, a high-yielding red bean variety named Bribri was initially favored and adopted

by farmers but was ultimately rejected by industrial buyers due to its darker grain color

compared to other red varieties in the market.

In recent years, these scientists have been working to develop new bean varieties more

resilient to climate-related stress. The country’s farmland is located in the Central American

Dry Corridor, which is prone to frequent dry spells. Agricultural production on small-

scale farms is especially sensitive to these weather shocks because of insufficient irrigation

infrastructure, so that farmers need consistent precipitation patterns to decide where to

plant, and when to harvest.

The germplasm used in this study was a product of these crop improvement efforts. A

seven-year breeding-selection cycle started with more than 100 genetic lines from the Inter-

national Center for Tropical Agriculture in Colombia (CIAT) and produced five candidates

for a new red bean variety to be released.13 The main objective of this selection process was

to improve seeds’ drought tolerance compared to Cabecar, a widely adopted bean variety

that was released in 2003. Nevertheless, each new seed candidate has distinct characteristics

that may favor the conditions of some farmers but not others. For example, as highlighted

earlier, bean’s grain color is particularly relevant to industrial buyers. As shown in Appendix

Figure C1, the new bean varieties vary across red color shades. Some of these color shades

matter more to buyers or innovators than to farmers, which is crucial to understand which

new seed varieties will be successful in the market.

The study was conducted in two regions of Costa Rica (see figure 2). These regions

were selected because together they account for most of the beans produced in the country.

Furthermore, each region has distinct agroecological and socioeconomic conditions. The

northern region is located along the border with Nicaragua and includes the Huetar and

Chorotega subregions. In the south, the Brunca region is located near the Pacific Ocean,

stretching along the mountain range near the border with Panama.

The main economic activity in these regions is agriculture. In Costa Rica, common beans

are a cash crop with a stable demand and a short farming cycle (about 75 days), making it

fundamental to farmers’ income and food security. Bean production allow farmers to finance

input purchases to produce major crops (e.g., maize, and rice) for commercial use, and other

minor crops for self-consumption. In the south, farmers grow beans twice a year, following

the dry (October to February) and wet (May to August) season.

The steep terrains of the south limit mechanization, forcing bean producers to rely heavily

13This implies that farmers had no access to these varieties prior to the trial with very few exceptions.
Those who had access to the new germplasm were part of a small group of farmers in the southern region
that allowed breeders to test the varieties as part of the selection process. In any case, farmers proved unable
to identify the specific varieties in the trials.
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on farm labor. In comparison, most farmers in northern Costa Rica only plant once per

year during the dry season. Farms in the north are located in flat terrain, which allows for

mechanization and larger planting areas. Importantly, farmers in the south have the support

of a stronger network of agricultural associations and cooperatives offering commercialization

services, credit, and mechanized processing, which are lacking for most farmers in the north.

Pacific Ocean

Atlantic Ocean

Non-evaluation village
Evaluation village
Experiment Station 
Fabio Baudrit - UCR

N

50km
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20km100km

Costa Rica

Panama

Nicaragua

Figure 2: This map of Costa Rica shows the 118 villages selected for the study. Highlighted in blue
are the villages assigned to the agronomic trials (Stage 1). Panels A and B zoom in over the North and
South regions, respectively. The diamond-shaped icon in the middle locates the lab and experiment
station where the new varieties were developed.

3 Model

In this section, I present a model describing the production of technological improvements.

Building on Hanna et al. (2014), the model describes the development of multi-attribute tech-

nologies as a process in which innovators learn the parameters of a gain function depending

on research effort. Although this setup can describe various scenarios, I present parts of

the model in the context of plant breeding research to match the setting of this paper.

The model’s results show that when research costs are correlated with farmers’ character-

istics, such as their specific location, innovators only learn to optimize certain technology

attributes, which I call biased specialization. The model also provides an explanation for

why some technologies do not receive any research investment (e.g., orphan crops) and de-
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scribes technological mismatch as a consequence of exogenous frictions that limit innovators’

research effort.

3.1 Technology supply

Innovator i produce a single technology ki characterized by an J-dimensional vector of at-

tributes z = {z1, z2, ..., zJ}. This process can be divided in two sequential steps. In step 1,

innovators choose what attributes to improve depending on the research cost e of learning a

fixed parameter θ = {θ1, θ2, ..., θJ}. In step 2, innovators choose the level for each attribute

zj ∈ z that maximizes the gain function g : RN
+ → R+. The gain function is a productivity

shifter that affects the innate productivity of technology represented by ω(zo) ∈ R+, which

captures the potential output level produced by baseline attributes zo. Given the price of

each technology ρ, the (state-dependent) revenue of producing technology net of research

costs is

Π(z, a, q) = ρ · g(z|θ) · ω(zo)−
∫ ϵ

ϵ

ei(a, ϵ)dL(ϵ) (1)

where g(zj = 0|θ) = 1 and dg
dz
> 0. Research cost function ei : RJ

+ → R+ is the total cost for

innovator i across all dimensions j where vector a ∈ {0, 1}N , eij(aj = 1, ϵ) > 0 for aj ∈ a, zero

otherwise. Random variable ϵ captures the state of nature affecting research costs (described

later). The research cost function aggregates the learning costs over the distribution of ϵ,

defined as L(ϵ) over the support (ϵ, ϵ). Subscript i appears only in the second term of

equation (1), indicating that all innovators share the same production function, but their

research costs vary with effort. Therefore, some innovators are more efficient at learning θ

and thus have a comparative advantage over others.

As an example, the gain function can be defined in terms of the Breeders’ Equation

described in (2) (Cobb et al., 2019). Consider index H = θ′ · t, which captures the total

genetic value of a plant variety as a linear combination of a m x 1 vector of trait genotypic

values t and an m x 1 vector θ of economic weights. These weights capture the relative

importance of each trait and, in theory, they reflect market conditions and preferences for

those traits (Magnussen, 1990).

In the context of conventional breeding, the main limitation is that genotypic values t

are unobserved, preventing breeders to know the true value of H. Selection is instead based

on a index I = γ′ · z which is a function of nx1 estimated phenotypic values (or molecular
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markers) z and the corresponding coefficients γ.14 Under certain assumptions,15 genetic gain

measured as the expected response to selection is

g(qz, θ) = qzs(θ, C, P,G) (2)

where qz is the selection intensity (i.e., how selective breeders are based on the performance

of attributes z), and s is a function of γ̂ = P−1 · G · θ, and C, G, and P are matrices

containing variability and heritability information.16 In this model, P , G and C are given

by the data and they determine biological structure in which genetic gains occur. Therefore,

breeders only decide over qz and θ. The selection intensity is determined by the fraction of

individuals from the current generation selected for the next generation, such that higher

intensity usually results in greater genetic gain.17

Breeders also determine economic weights to reflect the relative (market) value of each

trait. These researchers must learn θ in order to accurately represent the contribution of

each trait to the total breeding value.18 However, the choice of economic weights are often

arbitrary and inconsistent (Magnussen, 1990; Ceron-Rojas et al., 2008). The lack of reliable

economic data and the difficulty of quantifying trait values has motivated crop scientists to

develop simpler index that do not require economic values (Baker, 2020), but that implicitly

ignore real market conditions.19 Consequently, these economic weights often reflect breeding

priorities and breeders’ preferences instead. The use of inappropriate economic weights

biases the expected genetic gain (Hazel et al., 1994) and results in the development of plant

varieties that may produce a large genetic gain but lack market demand.

14The conventional approach to plant breeding is based on phenotypic selection (Crossa et al., 2021), in
which a fraction of individuals in a population with a desired trait or trait level are selected and reproduced to
create a sub population of improved individuals. Modern approaches to breeding that incorporate specialized
genetic information are also available to breeders but their use in developing countries is limited (Herrera-
Estrella and Alvarez-Morales, 2001).

15See for instance Ceron-Rojas et al. (2008).
16Specifically, C is the variance-covariance between total genotypic (H) and phenotipic (I) values, P is

the variance-covariance matrix across phenotypic values, and G is the variance-covariance matrix between
trait-level genotypic and phenotypic values.

17In some cases, however, increasing the selection intensity also reduces the genetic variability available
for further selection (e.g., inbreeding), which reduces the response to selection, hence genetic gain.

18Following (Smith, 1936), suppose for example a maize variety with two traits, grain yield t1 and plant
height t2, and that it is determined that an improvement of 10cm in plan height is equal in value to a 1
bushel per hectare. In this case, using yield as the reference trait, θ1 = 1 and θ2 = 0.1.

19For instance, an approach used is to transform the selection problem by fixing desired fixed genetic gain
and then solving for the parameters that produce that level (Pesek and Baker, 1969).
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3.2 Learning

Following Hanna et al. (2014) learning model, I assume innovators decide whether to research

and learn each dimension of θ.20 Let aj = 1 if the innovator research dimension j of parameter

θ, zero otherwise. For every dimension that is researched, the innovator learns its parameter

and sets the level of attribute zj. If a dimension is not researched, z̃j, innovators’ action over

the attribute levels is random, which is captured by the uniform distribution of possible trait

values z̃j. Thus, for every dimension that is not researched, E[g(z̃j|θ)] = 1
|Zj |

∑
z̃j
g(z̃j|θ).

Innovators do not know parameter θ so they must learn it through experimentation.

Assume that innovators initially have some prior belief θ̃, such that gj(zj|θ̃j) = θ̃j(zj) ∼
N(0, ν2), where is assumed to be the same independent across dimensions j and ν2 > 0

(Hanna et al., 2014). Taken together, for any dimension that is not researched,

E[g(z̃j; θ̃)] = E

 1

|Zj|
∑
z̃j

θ̃j(zj)

 = 0 (3)

Expression (3) indicates that innovators’ decision not to research a dimension introduces

random variation in the gain function, which implies that innovators cannot infer the ap-

propriate relationship between an attribute and the improvement it produces. Therefore,

innovators cannot expect positive gains from a dimension they have not researched.

3.3 Demand for innovation

Farmers’ decisions are modeled using a discrete-technology structure. Technology users are

represented by a continuum of farmers indexed who operate in locations l ∈ {1, ..., L}. Each
location represents geographical areas with common agroecological conditions (e.g., districts,

villages, etc.). Farmers produce a homogeneous good y using a single discrete technology

ki ∈ K and a continuous amount of input x ∈ X.

Farmers choose what technology to use and the input level to apply. Given output price

p, input prices w, let (x∗, k∗) represent the bundle of inputs and technology choice that yields

20A key assumption here and in similar learning models is the separability across a technology’s dimensions
(Hanna et al., 2014; Conley and Udry, 2010; Foster and Rosenzweig, 1995). This assumption allows for
analysis of each dimension individually, but there might cases when technology’s attributes cannot be easily
separated. When selecting what dimensions to research, innovators implicitly fix the optimal level of multiple
attributes at once. For example, plant height, which affects clearance aboveground, and resistance to soil
borne diseases. Any covariate shift across traits implies that changes in performance cannot be accurately
attributed to a single dimension of the technology, which can have significant consequences for learning.
Non-separability across dimensions could make learning about technology’s performance more costly and
may limit the updating of agents’ beliefs due to nosier, less reliable signals.
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the maximum level of farmer’ utility U such that

V (x∗, k∗) = max
x,k

U(py(x, k)− c(k, x; ρ, w)) (4)

where U ′ > 0, y(x, k) is total output with dy
dx
> 0, and c(k, x; ρ, w) is the production cost

with dc
dx

= w > 0, and dc
dk

= ρ > 0 (abusing the notation dk := k0 → ki), where w and ρ are

input and technology prices, respectively. Moreover, new technology is factor-deepening if
dx∗

dk
> 0.

For simplicity, I assume that farmers compare their current technology k0 priced at ρ0 < ρ

versus a finite set of alternative (new) technologies ki. Farmers choose a new technology ki

if it is superior, meaning that new technology provides a higher level of utility conditional

on the optimal input demand x∗(ki, ρ, p, w), such that

V (x∗, k0) < V (x∗, ki) (5)

3.4 Results

Propositions 1 and 2.a below are the analogous to cases in Hanna et al. (2014) translated to

the optimization problem described in (1). The main difference here is that research costs

vary across innovators depending on their productivity. Proposition 2.b imposes additional

structure to states of nature such that research costs correlate with location-specific condi-

tions. Propositions 3 and 4 define who adopts new technology under biased specialization

and a large number of innovators. Proposition 5 describes the technology adoption and de-

fines measure of technological mismatch. Please refer to the Appendix A for more details.

Proposition 1:

When there are no research costs such that ei = 0, innovators research every dimension and

optimize j and choose the level of z∗j (aj = 1, θj) = argmaxzj Πj(zj, 1; θj).

Proposition 2: Biased specialization

a. Innovators only learn to optimize attributes that are worth researching given their

research effort.

b. The resulting new technologies are optimized for certain locations (or groups of farmers)

and not others.

The key assumption here is that research costs are correlated with some characteristic of

farmers. I use location because spatial dependency is particularly relevant for plant breed-
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ing.21 Following (Moscona and Sastry, 2021), I capture this by defining ϵ in terms of two

elements affecting costs: α is a random factor that captures context-neutral characteristics

that applies to all innovators equally (e.g., fixed R&D costs), and β is a fixed factor of

location-specific characteristics.

Proposition 3: Technology adoption

There exists some location l′ such that farmers in locations l′ < l adopt technology ki, while

farmers in locations l′ > l continue using current technology k0.

The optimality condition for the market for ki to clear is an expression that compares

research costs with key parameters and relative prices, as follows

ei(α, β(l)) =
ω(z0)ρ

2

ρ0
(6)

Expression (6) shows that higher technology prices ρ or higher the innate productiv-

ity ω(z0) allows innovators to develop technology for locations with higher research costs.

Moreover, the higher the price of current technology ρ, relative to ρ0, less research effort is

needed to develop new technologies that are adopted. As shown in Panel A of Figure 3, this

condition can help us to describe the adopters of technology ki as those farmers located in

l < l′. This figure plots the research cost curve versus locations that are indexed in a way

that the marginal research cost is higher for higher values of l (see details in the appendix).

In this case, by Proposition 2, innovator i produces technology optimized to locations l < l′

and farmers in these locations adopt at price ρ.

Note that the right-hand side of expression (6) does not depend on l. This implies that

farmers do not face heterogeneous costs when purchasing new technology. Alternatively, in

cases where these costs were to be passed on to farmers, such that price premiums influence

farmers decisions by limiting access to the technology, we get the key result by (Suri, 2011)

that heterogeneous returns across locations determine adoption.22

Proposition 4: Thick and thin markets

For large number of innovators with distinct research costs ei and e(α) < ω(z0)ρ2

ρ0
for all l,

enough technologies are optimized and produced for all farmers to adopt at price ρ.

21To illustrate this point, consider the example of a common bean variety introduced in 2001 by the
association of bean farmers from Changuena (Villalobos and Fonseca, 2006), a village in Costa Rica distant
from other bean growing regions. The new variety was selected to match the hyper-localized conditions
of this village, especially its higher elevation and micro-climate, a task that would have been strictly more
difficult to do for the national breeding program alone, and any private seed company.

22A similar case involves price discrimination schemes arising from imperfect competition in the seed
market (Shi et al., 2010).
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Figure 3: Optimality and technology adoption

As illustrated in Panel B of Figure 3, comparing two innovators, innovator 2 has lower

marginal research costs (e′1 > e′2) so he is able to efficiently produce technologies that will

be adopted in greater number of locations.

Alternatively, two other cases are possible. First, condition e(α) < ω(z0)ρ2

ρ0
implies that

the context-neutral research costs need to be low enough for innovators to produce new

technology. If e(α) = ω(z0)ρ2

ρ0
a single innovator supplies the market and adoption occurs

in in regions with zero location-specific research costs, as depicted in Panel A of Figure 3.

Second, for all e(α) > ω(z0)ρ2

ρ0
there is no new technology produced in this economy.

It is important to note that a thin market, characterized by a single or very few innova-

tors, reflects the conditions of crop improvement in developing countries. As shown in the

previous section, in particular Figure 1, when crop improvement relies on a few innovators,

typically a single national research institute with few crop-specific breeding programs, there

are only few new crop varieties available for farmer to adopt. The model presented here

suggests that thin markets occurs when no private innovator has research costs low enough

to produce technology at the current price ρ. Thus, to some extent, the model explains the

existence of orphan crops, as those in which there is not a single location where research

investment is optimal for innovators.

Proposition 5: Mismatch

If there is some exogenous upper limit ē that constraints research investments such that

ei(α) ≤ ē < ω(z0)ρ2

ρ0
, a lower number of technologies are adopted.
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Think of this limit as a budget constraint that prevents innovators from making invest-

ments in research. In the case of public research, it is perhaps more evident that some

restriction applies since these researchers are subsidized, for most part, by taxpayers. It

is also natural to think that such restriction is correlated with income, given that high-

income economies are able to direct more funds towards public research. Consequently, this

restriction is more likely to bind in lower-income economies.

ei(α, β(l))

ω(z0)ρ2

ρ0

ē

e(α)

l′l̄adopters

mismatch

l

e

Figure 4: Technological Mismatch

In the case of only a single innovator in the market, we get the results depicted in Figure

4. The main result is that the number of adopting locations is lower than would have

been in absence of restriction ē. I call this case technological mismatch given that, under

market prices ρ and ρ0, farmers are willing to adopt new technology in locations l̄ to l′

but the only new technology available is optimized for other places. Farmers who adopt

the available technology that is not optimized for their region are worse off because the

improvement it provides it is not economically efficient. Many reasons could lead to such

decision, for example, farmers not being able to accurately attribute the true performance

of new technology (Barrett et al., 2004; Hanna et al., 2014; Michelson et al., 2021).

4 Experimental Design

In this section I describe the randomized controlled trial used to empirically estimate the

causal effect of mismatch on adoption and productivity of the new bean seeds. The central

idea of the experiment is to vary the type of seed varieties available to farmers. In the

language of the model, imagine that we compare two scenarios, one in which there are
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multiple innovators, each producing a distinct seed variety, versus a case in which only an

innovator supplies a single seed variety to the market. Given the study setting, that single

innovator is the national plan breeding program in Costa Rica.

In reality, all new bean varieties were developed by breeders from this public research

program, and they all were developed to improve drought tolerance. The key point here is

that each new seed variety has unique characteristics that may be a better match for some

farmers’ preferences than other new varieties and the current seed in the market. These

differences reflect the decisions of multiple innovators, or counterfactual scenarios to seed

release decisions made by the national breeding program.

Based on the model, the predictions to be tested with the randomized intervention are:

i Adoption of the new varieties is lower as a consequence of mismatch.

ii Adoption is correlated with important location-specific characteristics of farmers and

key technology attributes ignored by innovators.

iii Farmers who adopt a new seed variety optimized for their location exhibit higher

productivity gains compared to mismatched adopters.

To measure mismatch, we require information about farmers’ preferences. For this rea-

son, I divide the randomized intervention in two stages. In the first stage, I used on-farm

agronomic trials to elicit farmers preferences and estimate the new varieties’ performance in

farmers’ fields. Based on that information, the new varieties were offered to farmers in the

second stage. In the following sections I explain each experimental stage in detail.

4.1 Randomized Controlled Trial

The randomized intervention was implemented in two stages as described in Figure 5. In

the first stage, agronomic trials were conducted to test the performance of five red bean

varieties on farmers’ fields and to elicit farmers’ preferences among those new varieties. To

control for participation in the agronomic trials, the sample of farmers was divided into

two experimental groups randomized at the village level to prevent inter-farmer learning

spillovers.

In the second stage, farmers were offered one of the new varieties for purchase, conditional

on participation in the trials and assignment into four experimental groups depending on the

random distribution of varieties, and the breeders’ recommendation. Each stage is explained

in detail in the following sections.
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Farmers
(N=800, villages=118)

Non-evaluation group
(n=400, att=15.0%)

Control:
No offer

(n=200, att=18.5%)

Reference:
Offer R

(n=200, att=19.5%)

Evaluation group
(n=400, att=8.7%)

Breeders’ Choice:
Offer R /∈ s

(n=200, att=9.0%)

Farmer’s Choice:
Offer V ∗

i , R ∈ s
(n=200, att=13.5%)

Baseline
Late 2021 - Early 2022

Stage 1:
Agronomic trials
2021-2022 Season

Stage 2:
Seed offer

2022-2023 Season

Figure 5: This figure describes the research stages, intervention timeline, the sample
distribution into treatment arms (n), and attrition levels at each stage (att). The Evaluation
group refers to farmers assigned to test the new varieties using on-farm agronomic trials.
The Farmer’s Choice group refers to farmers who were offered the variety of their preferences
(V ∗

i ) from their testing set of new varieties (s). Farmers in the Breeders’ Choice group were
offered the variety recommended by the breeders (R), which was not part of their testing
set. The Reference group was part of the non-evaluation group but also received an offer to
buy R, reflecting the business as usual for new seed variety releases. The control group did
not participate in the agronomic trials nor receive an offer of new varieties.

4.2 Stage 1: On-farm agronomic trials

The Triadic Comparison of Technologies method (Tricot for short) was used to allocate

varieties to farmers (five new varieties and Cabecar for reference).23 Each farmer in the trial

group received a random set s of three new varieties from among the five new varieties to

plant during the dry season of 2021. Information about the varieties in the testing sets was

not revealed to farmers, so varieties were given letters A,B,C as names. To limit information

spillovers about the varieties’ performance, farmers were informed that each participant in

the trial received a different set of varieties. By design, each of the six varieties only appears

in half of farmers’ testing sets.

Farmers also participated in training sessions on how to plant and evaluate the new

23See van Etten et al. (2016, 2019) for detailed information about the Tricot method.
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varieties. They were asked to apply the same overall management to the trial plots as their

current bean plots, and to choose the location of the trials in their fields. However, farmers

were told the number of plants, seeds per plant, and distance between plants to use. They

were given 150 grams of each new variety to plant in a 5m2 meters plot per variety. A group

of local collaborators prepared and oversaw staking the trial plots for identification, support

farmers in how to fill out a performance scorecard, and collect three waves of trial data

(planting, mid-season, and post-harvest).

During the trials, farmers examined the varieties’ relative performance by choosing the

best and worst varieties in their set. This evaluation was structured using specific traits to

prevent differential learning, as some farmers may ignore important technology’s features

(Hanna et al., 2014).24 Participants reported which variety in their testing set, if any, they

wanted to adopt in the next season. They also indicated their overall ranking of varieties and

compared each new variety with their current variety. With the help of local collaborators,

farmers weighed the bean output from each plot to precisely measure the new varieties’ yield.

4.3 Stage 2: New seed offers

In the second stage, I use the random allocation of new varieties to further divide the

sample. Based on the trial’s information and farmers’ preferences, farmers were grouped

into four experimental groups (three intervention groups and a pure control of farmers).

The intervention groups received an offer to buy one of the new varieties tested in the trials

and were presented with aggregate information about the trials’ results. Each offer consisted

of three kilograms of a single variety for a fixed price of 4800 Colones (approximately $8
USD), matching the retail cost of the same amount of certified seed. Note, however, that

the seed offered to farmers in the intervention was foundation seed, which is produced under

higher quality standards, and it is only used for research. The seed used in the intervention

was therefore superior in quality to that of the commercial certified seed available to farmers.

In addition, this price does not take into account other costs (e.g., transportation). The

offers were made at the farm gate to prevent those costs of access to the new seed influence

uptake decisions (Suri, 2011). Thus, field assistants visited each farmer in the intervention

groups at their farms, or at their most convenient place to meet.

During the seed sale, flexible payment methods were allowed to prevent liquidity con-

straints from limiting seed purchases (Karlan et al., 2014). Payment methods included cash,

24The traits included in the performance scorecard are: plant structure, maturity, pest resistance, drought
tolerance, yield (referring to grain weight and the number of grains per pod), commercial value (grain size
and color), taste, and cooking time. Some of these traits were recommended by the breeders and others
were market-oriented attributes relevant for farm profitability. The Spanish version of the scorecard used by
farmers is included in figure C5 in the appendix.
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interest-free pay-later loans (up to two weeks), or online payment using a smart-phone app

(called SINPE). Farmers were also allowed to reschedule a visit to deliver the seeds and

collect the payment personally, or through a third party (relatives, neighbors, and local

shopkeepers).

The varieties offered to each farmer were determined by farmers’ preferences and crop

scientists’ recommendations. The process of deciding the variety to recommend imitated

real-life decisions breeders make when a new variety is released. Results from the agronomic

trials were used to determine the best performing variety in each region, as well as yield

differences between the new and the reference varieties. Breeders also used information from

previous trials conducted in the lab at public experiment stations and exhibition plots, and

qualitative results from discussions with selected farmers’ groups and association leaders.

Half of the farmers who participated in the agronomic trials in stage 1 were assigned

to the Farmers’ Choice treatment arm (see figure 5 under stage 2). Farmers in this group

were offered their preferred variety from the seeds tested in the trials (denoted V ∗
i for each

farmer i). First-hand experience with the new varieties in the trials may allow farmers to

update their beliefs and reduce the uncertainty related to investments in new technology.

The Farmer’s Choice group represents an ideal but unrealistic situation in which the supply

of crop varieties matches exactly farmers’ stated preferences for new varieties.

The other half of agronomic trial participants in stage 1 formed the Breeders’ Choice

group and were offered the variety recommended by the breeders (R). Note that farmers

in this group had no previous experience with the recommended variety, given that R was

not in their testing set s. Since these farmers formed and expressed preferences for varieties

other than R, this group captures the mismatch problem caused by a constrained seed

supply unable to match farmers’ preferences. In this case, neither breeders nor farmers

knew the actual performance of R in farmers’ fields. However, to maintain the same level of

information across intervention groups, farmers were informed about the results of the trials

when the offer was made. This information includes the average performance in each trait

of R, relative to the varieties in the agronomic trials.

The non-evaluation group from stage 1 was divided into the Reference and Control groups.

The Reference group was treated exactly as the Breeders’ Choice group, such that the only

difference is that reference farmers did not evaluate the new varieties under evaluation in

stage 1. Thus, results for this Reference group provide a control that allows me to identify

the effect of participation in the agronomic trials on farmers’ take-up of the new varieties.

The Reference group is the closest to the current reality of farmers, as they usually have

limited information about new technology before deciding whether to adopt it, and they rely

on performance information provided by breeders, input suppliers and their peers, not their
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own prior experience with a newly released variety.

Finally, the Control group is composed of farmers who took part in the baseline survey

but were not part of the agronomic trials in stage 1 and did not receive any offer of new

varieties in stage 2. I use the Control group to test whether adopters (those who take-up of

the new varieties) and non-adopters among the three treatment arms differ from an untreated

group of farmers from the same population selected at random.

4.4 Sampling and data

4.4.1 Administrative records

The final sample consists of 800 small- and medium-scale farmers. Participants were farmers

selected from 118 villages using administrative records from the National Productive Council

of Costa Rica (CNP henceforth for its name in Spanish). I sampled villages with at least

six small or medium scale bean farmers (farm size of less than 50 hectares) registered with

the CNP.25 By recommendation of the breeders, villages in indigenous communities were

excluded to prevent the replacement of the traditional bean varieties they grow. Other

villages were ignored for practical reasons (places with few bean farmers, or with insufficient

extension support to conduct the study). I then drew a stratified sample of 800 small-scale

farmers from the CNP registry, with 6 or 7 farmers per village (strata).

Appendix Table B5 compares the sample of farmers with the population of small- and

medium-scale farmers in the CNP data from 2020. I find no statistically significant differences

for the relevant variables included in the registry, except for a slightly higher proportion of

farmers sampled from the northern region, suggesting that both samples of farmers are

comparable and supporting the external validity of the experimental results to Costa Rica

more broadly.

4.4.2 Survey data

Survey data were collected before the agronomic trials of stage 1 (baseline) and after the new

varieties were offered to farmers (endline). In the southern region, baseline survey data were

collected in the second half of 2021 before the start of the rainy season. In the north baseline

data were collected during the first semester of 2022. A team of local surveyors visited farmers

to collect baseline information on individuals’ characteristics, household composition, and

farm management. The farm survey included plot-level questions on productivity, input use

25Most farmers in Costa Rica have incentives to register with the CNP. Being part of this registry allows
farmers to access public assistance programs, including extension services, subsidies, and free inputs, such
as certified seed and chemical fertilizer. Registration also permits farmer cooperatives and associations sell
beans to the public procurement program at a higher price than the market.
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and farming practices. Table B4 in the appendix reports mean values for relevant baseline

characteristics and compares evaluation and non-evaluation group in stage 1.

The average farmer in the sample is male, middle-age, with only elementary school level

education, and part of a household making $5.34 ppp dollars per person per day (for reference,

the World Bank estimates the poverty line for Costa Rica of $6.85 in 2017 ppp dollars).26 The

average farm uses on average 5.4 hectares of land and has a productivity level on par with

national estimates of 18 to 20 quintals27 per hectare for small- and medium-scale farmers.

To test for sample balance between these groups I use two-tail difference in means tests.

I find no significant difference for most variables except the education level (p=0.07) and

farm area in hectares (p=0.04). Thus, I include these two variables as baseline controls in

the econometric estimation.

5 Main Results: Preferences

In this section I describe farmers’ preferences for the new seeds using information from

the agronomic trials. First, I document the varieties’ performance across traits evaluated by

farmers using rankings. I then study how much individual attributes contribute to the overall

variety performance and the correlation between rankings. Finally, I report differences in

farmers stated preferences for the new varieties compared to their current seed.

5.1 Measurement and estimation

Data collection for the stage 1 agronomic trials was divided into four short waves in which

local collaborators visited or contacted farmers over the phone. In each wave, farmers eval-

uated eight agronomic traits, most of which have been used in other on-farm evaluations

of common bean (van Etten et al., 2019, 2016, see for example).28 For each trait, farmers

ranked the best and worst variety among the testing set of three seed varieties.

In the first visit, 30 days after the estimated planting date, farmers were asked about

plant structure. This visit was also used to confirm the actual planting date of the trial plots.

Two weeks later, farmers were asked about maturity (the time plants took to flower) and

plants’ resistance to pests and drought. During harvesting, between 70 and 80 days into the

trial, farmers were asked to compare the varieties in terms of yield and marketability (similar

commercial value in terms of quality and other traits relevant for buyers and end-consumers).

26This calculation was made using the 2021 purchasing power parity (ppp) conversion factor of 343.9
(World Bank, 2023).

27A quintal is a 100 pounds (roughly measured by farmers as 46 kilograms) bags used in the production
and commercialization of beans in Costa Rica.

28Figure C5 in the appendix includes the evaluation scorecard used in the agronomic trials.
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They also were instructed to cook and taste the varieties to estimate the cooking time and

their preferences as end-consumers. Some days after the harvest when beans ready for sale,

farmers were visited to evaluate the overall performance and their seed preferences. Based

on this information, farmers were also asked to compare pair-wise each of the new seeds

versus their current variety.

Two questions were used to determine farmers’ stated preferences. Farmers were asked

to decide which varieties they would like to plant in the next season, as a measure of their

stated preferences. They also decided what variety was the best variety overall from their

testing set. Responses to these two questions coincide 92% of the time, but only 60% of

farmers chose a single variety as strictly preferred. Also, 5.6% of farmers indicated they were

not willing to adopt any of the new seeds. Whenever more than one new variety is chosen,

the variety declared as the overall best is used to resolve all ties.

5.2 Technology attributes

Figure 6 reports the performance of the new seeds compared with the reference variety

(Cabecar). The graph reports trait-level worth estimates from a generalized Plackett-Luce

model (Luce, 1959; Plackett, 1975), as implemented by Turner et al. (2020). Worth is a non-

dimensional measure of a latent characteristic. The higher the worth value, the greater is the

likelihood of that variety to be selected (de Sousa et al., 2023). Thus, these estimates can be

interpreted as the variety performance or attractiveness for a given trait. Furthermore, the

estimated worth values are a sample analog of parameter θ described in section 3.1. Color

intensity captures the magnitude of the worth difference. Blue (red) shades indicate that a

new seed variety has a better (worse) performance than the reference variety.

Trait performance data show three important descriptive results. First, despite that the

new seeds perform better than the reference variety in many traits, no new seed is strictly

better in all traits. Particularly, the reference seems to have better plant architecture and

maturity. Second, the overall best variety is the SEF-71, but other varieties such as SEF-60

and SEF-64 exhibit a similar and sometimes better performance in certain traits (e.g. taste).

Third, the overall performance of the new seeds seems to be driven by yield, marketability

and taste. However, there is not complete agreement between individual trait measures

and the overall assessment of the new seeds (for details see Figure C3 in the appendix),

meaning that different traits were as important to the overall performance of different new

seed varieties.

Table B1 in the appendix reports all traits evaluated, the timing of the evaluation and

the Kendall correlation, which indicates how much farmers prioritized each trait when de-

termining the overall performance of the new seeds. These estimates confirm the third result
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mentioned above. The highest priority traits according to these estimates are yield (τ̂ = 0.78,

p=0.00) and marketability (τ̂ = 0.66, p=0.00). Correlation estimates for taste are similar

than for other traits, such as drought tolerance and plant architecture.

overall
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pest res.

drought tol.

yield

marketability

taste

cooking time

REF

SEF−42

SEF−60
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0.0
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Figure 6: This figure is a trait performance heat map. The reported values are
in log-worth units. The greater the worth value, the higher is the likelihood of that
variety to be selected over the reference (de Sousa et al., 2023). Color values indicate
the difference in worth values between each new seed variety and the reference variety.

However, yield comparisons indicate no significant improvement from the new varieties

in the average farm (see Table B6 in the appendix). The estimated yield for all agronomic

trials is about 19.6 quintals per hectare. For reference, the mean yield reported at baseline

is 19.1 quintals/ha. I find no significant yield improvements by comparing the new and

reference varieties. The only significant differences are lower yields for the SEF-42 and

SEF-64 varieties.

Considering these varieties were developed to improve drought tolerance –a low proba-

bility event, these averages could mask differences in state-conditional performance due to

extreme weather events. At baseline, only 4% of farmers reported to have experienced farm-

wide drought events (see Table B4), and their yield is not different than non-drought farms

(p=0.319). It is also possible that farmers prioritized yields and marketability rankings more

because this information was assessed at the end of the agronomic trial, which made it more

salient to farmers when asked about the overall performance of the new seed. This type of

ordering effects is not possible to control for in the Tricot approach, given that the evaluation

follows the development of the crop from planting to harvest.
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5.3 Stated preferences

Figure 7 compares farmers’ stated preferences for the new seeds, the reference variety, and

their current seed. Panel A reports average log-worth estimates across alternatives relative

to the reference variety, and their corresponding confidence intervals based on quasi standard

errors from the Plackett-Luce model (see de Sousa et al. (2023)). Panel B shows the log-worth

estimates transformed into probabilities of choosing each alternative.
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Figure 7: Panel A reports log-worth estimates using the Reference variety as the com-
parison category, and the corresponding 95% confidence intervals based on quasi standard
errors. The vertical line indicates the zero line corresponding to the estimate of the reference
variety. Panel B reports the winning probabilities across varieties, and the corresponding
vertical line shows the average probability of choosing a variety at random (1/7).

Results show that, although the SEF-71 variety is more preferred among the new seed,

farmers’ current seed strictly dominates all new seed varieties. Panel B also suggests that the

likelihood of selecting SEF-71 as the preferred variety is higher than choosing the reference

variety, but it is not statistically different than average uniform probability of selecting any

variety at random: 1/number of alternatives or 14.2%.

Appendix Figure C2 reports the simple frequency distribution of each variety being chosen

in the agronomic trials as the best overall and across regions. As before, pooled data (panel

A) shows that SEF-71 is chosen more than the rest. Differences between regions (Panel B)

show that these results are driven mostly by the south, where the reference variety, Cabecar,

under-performed compared to the other new seeds.29

29This is supported by qualitative observations in the field indicating an appetite for alternatives that are
not as susceptible to winter pests and diseases as Cabecar. In contrast, in the north, where farmers only plant
during the summer season, the reference is the most chosen variety. Regional results, however, indicate no
significant differences when compared to a random choice. Although these findings are interesting, statistical
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6 Main Results: Choices

In this section I study farmers’ technology adoption decisions. As shown in Table 1, almost

all farmers who participated in the agronomic trials stated they were willing to adopt a

new variety, but only 61% percent indicated that the seeds were a superior technology (i.e.,

strictly better than their current variety).30 An even smaller fraction, 43%, purchased the

new seeds when offered, including 10% farmers that considered the new seed inferior, and

decided to try it again.

Table 1: Stated versus revealed preferences

Stage Decision Inferior Superior Total

1st Willing to adopt 0.34 0.60 0.94
Reject 0.05 0.01 0.06

2nd Adopt 0.10 0.33 0.43
Reject 0.29 0.28 0.57

0.39 0.61 1.00

Notes: Willing to adopt is defined as farmers stating they
would plant any of the new seeds in the next season right after
the agronomic trials of stage 1. Adoption refers to farmers tak-
ing up the new variety when offered in stage 2. Superior and
inferior technology refers to farmers declaring the new seed is
better (weakly dominant) or worse, respectively, compared to
their current seed.

Below, I explain in detail the estimation of the main treatment effects on take-up: mis-

match (-18 percentage points, p=0.001) and participation in the agronomic evaluation (+11

percentage points, p=0.256). I then explore alternative and confounding factors that could

influence adoption independently of the treatment. I focus on differences in productivity

between adopters and non-adopters, the demand for higher quality seed, and the role of

farmer beliefs about the new varieties’ performance. Although important, I find that these,

primarily demand-side factors, do not drive the differences in take-up across experimental

groups, not explain the sizable mismatch effects on adoption.

6.1 Measurement and estimation

The main objective is to estimate the impact on adoption of matching new seed to farmer

preferences. To do so, I use reduced form regressions exploiting the random treatment

assignment for identification of causal effects.

power is an important limitation for results on varietal differences across regions.
30See equation (5) in section 3.3 for a formal definition.
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What is the effect of technological mismatch on adoption?

The estimation of treatment effects on adoption is based on regression model described by

equation (7). The outcome take-up is an indicator variable that equals one when a farmer

buys the new variety offered in the intervention, zero otherwise. Explanatory variables

include indicator variables Recommendationij that captures assignment of farmer i in village

j to the treatment groups offered the recommended variety (Breeders’ Choice and Reference),

variable Evaluation identifies assignment into the agronomic trials (Farmer’s Choice and

Breeders’ Choice), δj capture village-specific fixed effects (strata used for randomization), X

is a vector of stage 1 controls, and ϵij is the error term, which is clustered at the village level

(randomization level in the first stage of the intervention).

take-upij = α0 + α1Recomendationij + α2Evaluationij + θXij + δj + ϵij (7)

In this model, the take-up rate of Breeders’ Choice group is identified by coefficients

α̂0 + α̂1 + α̂2. The treatment effect of assignment to the Farmer’s Choice group is α̂0 + α̂2,

and for the Reference group is α̂0+ α̂1. Thus, coefficient estimate α̂1 identifies the mismatch

effect on take-up, which is defined as the differences in take-up rates between the Farmer’s

Choice and Breeders’ Choice groups. This difference captures the effect of offering the

recommended new variety to farmers who did not prefer it, relative to farmers who were

able to take-up their preferred new variety.

The main hypothesis is that targeted farmers should exhibit the highest take-up rate of

all experimental groups, such that α̂1 < 0. The effect of participation in the agronomic trials

is identified by α̂2, which captures the difference in take-up between the Breeders’ Choice

and Reference groups. I test weather agronomic trial participation induces greater uptake of

the recommended variety by testing the null hypothesis that α̂2 = 0. Village fixed effects δj

control for location-specific effects, including differentials in varietal adaptability, and local

weather and market conditions.

6.2 Treatment effects

Figure 8 reports the take-up rates of new varieties across treatment groups. Overall, results

show that 43% of farmers purchased the new variety when offered during the intervention.

This rate varies significantly across treatment groups. Uptake of new varieties among farmers

in Farmer’s Choice group is 57 percent, which is 17 and 23 percentage points higher than

the Breeders’ Choice and Reference groups, respectively. These differences translate into

significantly higher adoption as a result of matching farmers’ preferences with the appropriate

new variety.
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Figure 8: This figure reports the take-up rate across treatments groups and the corresponding
95% confidence intervals. Take-up is defined as a farmer purchasing the bean new variety offered
in the intervention. The horizontal dashed line indicates the average adoption rate. Significance
based on difference in means tests: *** p<0.01, ** p<0.05, * p<0.1.

Furthermore, I find no significant difference in take-up rates between Breeders’ choice

and Reference groups, which suggest that participating in agronomic trials in stage 1 has

no significant effect on uptake of the seed variety recommended by the breeders, with which

the farmers had no personal experience prior the intervention.

Differences in take-up across the new varieties can give us a sense of the mismatch

magnitude. From the share of farmers in the Farmer’s Choice group that purchased the

recommended variety also chosen by the breeders, we could infer the number of farmers for

whom the recommendation matched their preferences. While 39% farmers in the Breeders’

Choice group purchased the recommended variety, only 22% of farmers in the Farmer’s

Choice group did so. This 17 percent points difference suggests that the recommendation

increased purchases of the recommended bean variety which may be inappropriate, if not

unfavorable, for one in six adopters.

Results also indicate that a sizable portion of take-up may be explained by need of higher

quality seed. Farmers can either use saved seed from a previous season which is prone to

quality degradation or go to the market to buy certified seed, which is expected to be higher

quality since it is produced by the CNP or local cooperatives under certain quality standards.

Thus, purchases of certified in the season when offers were made suggest that farmers are in

the market for higher quality seed. Given that the new varieties offered in the experiment

were of the highest quality (foundation seed, which is above the quality standards of those of

certified seed), the need for higher quality seed may be confounded with the demand for the
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new varieties. As shown by the horizontal line in figure 8, more than half of the estimated

take-up rate in the Reference and Breeders’ Choice groups may be due to the need for higher

quality seed.

Table B3 in the appendix reports regression estimates from linear probability models

using take-up as the dependent variable. In these regressions, the Reference group as the

comparison category so that this group’s take-up rate is identified by the constant term.

These results confirm the findings on the significant differences in take-up across treatments,

conditional on village fixed effects (all specifications), baseline controls (column 2), region-

specific effects (columns 3 and 4), and the loss of the evaluation plot in the agronomic trials

(column 4).

Regression estimates show consistent difference between Farmers’ and Breeders’ choice

groups of approximately 18 percent points in all specifications. On average, this mismatch

effect translates into 41% lower adoption among farmers who were offered the recommended

variety. In addition, other coefficient estimates suggest lost agronomic trial in the eval-

uation stage is associated with lower adoption. These are mostly random events due to

non-compliance, extreme weather, and biotic related events.

6.3 Other factors influencing adoption

6.3.1 Productivity

Figure 9 reports the distributions of yield from stage 1 (baseline and agronomic trials) and

shows that adopters are not significantly more productive than non-adopters. At baseline

(panel A), the average yield is 2 quintals per hectare lower among non-adopters, a difference

significant only at the 90% level. These differences disappeared in the agronomic trials.

Data from the evaluation plots (panel B) show that non-adopters did not underperform in

the trials relative to adopters. Average trial yield is not significantly higher for adopters

(difference in means= 0.22 kg, p= 0.19). The standard deviation is also similar between

both groups (1.61 kg versus 1.50 kg).

The overall shape of the distribution is similar in all cases, and the main differences in

trial yields are concentrated at the lower tail of the distribution and it is mostly driven by lost

trials with zero or small yields. Kolmogorov-Smirnov tests confirm that yield distributions

are not statistically different (p-values of 0.261 and 0.289, respectively).31

31Figure C4 in the appendix reports the trial yield distribution per region. In the south, the cumulative
distribution of non-adopters’ yield is higher for values below the mean yield (1.95 kg). Few differences are
present for the upper tail of the yield distribution. Furthermore, the gap between distributions at zero values
shows again the negative effect that lost trials had on adoption decisions in the north. In the south, the
distributions are statistically different but only at a 90% significance level.
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Figure 9: Graphs comparing the distribution of yield between farmers who purchased the
variety offered in the intervention (Adopters) versus those who rejected the offer (Non-adopters).
Panel A uses yield data from the baseline. Panel B uses data from the agronomic trials to and
reports the average yield of all evaluation plots. For each panel, the cumulative (bottom) and
kernel density (Top, Epanechnikov kernel and optimal bandwidth) are reported. The p-value from
the Kolmogorov-Smirnov (KS) tests on the equality of distribution is reported. A quintal refers
to bags of 100 pounds of weight. The planted area of each experimental plot was 5 squared meters
per variety.

Taken together, these results suggest that trial productivity alone does not predict adop-

tion. In the south, however, it is possible that there exists performance misattribution at

the low-end of the productivity distribution. This explanation is unlikely given that farmers

could compare the trial plots with their regular fields. Farmers were asked to follow the same

management for all plots, so that regular plots in the farm serve as controls for individual

farmer’s conditions. In addition, plot selection for the agronomic trials was also controlled

by design when farmers were trained in the evaluation stage. Thus, farmers could infer that

any difference between the trial and regular plots are caused by the new varieties, correcting

for misattribution issues.
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6.3.2 Seed quality

Table 2 reports estimates from the reduced-regression model in equation (7), focusing on the

need for higher quality. Column 1 reports the estimated mismatch effect and the effect of

participation on the agronomic trials. Column 2 shows that the coefficient of the indicator

variable that identifies purchases of certified seed is negative and not significant different from

zero. Once this effect is disaggregated by region (column 3 and 4), purchases of certified

seed in the north are correlated with higher take-up. In contrast, there is no significant

association between buying certified seed and take-up for southern farmers.

Table 2: Results on certified seed purchases

(1) (2) (3) (4)
take-up take-up take-up take-up

Mismatch -0.182*** -0.183*** -0.170*** -0.173***
(0.057) (0.057) (0.058) (0.058)

Trial participation 0.102 0.098 0.101 0.117
(0.080) (0.079) (0.077) (0.076)

Certified seed purchase 0.070
(0.062)

Cert. seed purchase x North 0.181** 0.179**
(0.080) (0.078)

Cert. seed purchase x South -0.037 -0.040
(0.085) (0.085)

Lost trial -0.176*
(0.103)

Constant 0.487*** 0.476*** -0.037 -0.176
(0.073) (0.074) (0.272) (0.270)

Dependent variable mean 0.432 0.432 0.432 0.432

Village fixed effects yes yes yes yes
R-squared 0.200 0.201 0.207 0.213
Observations 542 542 542 542

Notes: This table reports coefficient estimates from a linear probability model using
Pr(take-up=1) as the dependent variable. Fixed effects at the village-level included, which
was the stratification for the randomization of the agronomic trials. Robust standard
errors clustered at the village level in parentheses. Significance: *** p<0.01, ** p<0.05,
* p<0.1.

Reduced form regression results in Table 2 also show that participation in the evaluation

34



stage had no impact on take-up. The coefficient for assignment to the agronomic trials is

about 10 percentage points higher but it is not statistically significant. This could indicate

that the agronomic trials were a short-lived experience with no effect on new varieties take-

up. However, as reported in column 4, there is a negative effect of catastrophic losses

of agronomic trials on take-up. These mixed results indicate that even if participation in

the trials does not incentivize farmers to take-up a new variety at a higher rate than the

Reference group, they seem to respond to their individual experience during the trials. How

does the farmers’ experience in the evaluation stage, not just participation, influence farmers’

adoption decision?

6.3.3 Beliefs

Participation in the agronomic trials may have indirect impacts on farmer’s adoption deci-

sion. Participation allows farmers gather first-hand information that may update their beliefs

about new technology investments. Being able to learn about the new variety performance

by testing it (a proxy for learning-by-doing), prior the adoption decision should incentivize

farmers who observe net economic gains to adopt, and vice versa. This explanation, how-

ever, requires that there is no performance misattribution, so that farmers correctly identify

benefits and losses derived from the new technology (e.g., net productive improvements or

lower risks).

Furthermore, farmer’s expectations about new varieties performance may affect how they

respond to results from the agronomic trial. If farmers believe that the new technology is only

worth adopting for an improvement greater than a given threshold, small positive gains may

not be enough to trigger adoption. This threshold may depend on the specific productive

conditions and varietal preferences of each farmer. For example, farmers may favor seeds

with grain colors that are more attractive to consumers over significant but small yield

improvements.

I use baseline and trial data to test how participation in the evaluation stage and expec-

tation about performance affect take-up. First, I constructed an expectation gap measure

of productivity. At baseline, farmers were asked to determine the yield per hectare that,

on average, an hypothetical improved variety is likely to produce. The expectation gap is

then defined as the relative difference between the expected and current yields in percent-

age terms. The average expected yield is 10 quintals per hectare above the current yield,

although 14% of farmers believes a new variety would not improve productivity or even de-

crease yields. For reference, note that the relative price of certified seed is approximately

twice the price of a quintal of commercial seed.32 At the margin and ignoring transaction

32Prices for certified seeds are determined by the CNP. Formal farmers groups, such as cooperatives and
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costs, a rational farmer should be indifferent between saving seed they produce, and buying

a new variety (priced as certified seed) for an average yield gain of two quintals per hectare.

Table 3: Results on seed performance beliefs

(1) (2) (3) (5)
take-up take-up take-up take-up

Mismatch -0.182*** -0.182*** -0.184*** -0.185***
(0.058) (0.058) (0.057) (0.057)

Ag. Trial Participation 0.120 0.138 0.134 0.095
(0.078) (0.089) (0.085) (0.096)

Expectations gap -0.006 0.002
(0.008) (0.016)

Expectations gap x Ag. Trial -0.010
(0.018)

Baseline yield > Ag. Trial yield -0.047
(0.050)

Expected yield > Ag. Trial yield 0.027
(0.068)

Constant 0.472*** 0.459*** 0.467*** 0.468***
(0.092) (0.098) (0.093) (0.092)

Dependent variable mean 0.432 0.432 0.432 0.432
Village fixed effects yes yes yes yes
Baseline controls yes yes yes yes
Trial controls yes yes yes yes
R-squared 0.204 0.203 0.204 0.203
Observations 542 542 542 542

Notes: This table reports coefficient estimates from a linear probability models using Pr(take-
up=1) as the dependent variable. Expectation gap is measured as the relative difference between
expected and current yields at the baseline. Baseline controls include education and farm size.
Trial controls include certified seed purchases and lost trials. Robust standard errors clustered at
the village level in parentheses. Significance: *** p<0.01, ** p<0.05, * p<0.1.

Results in Table 3 show no effect of the expectation gap alone (column 1). When in-

teracted with trial participation (column 2), the expectation gap shows the expected null

effect for non-evaluation farmers in Stage 1, and a negative but insignificant effect of -0.1

percentage points for farmers who participated in the trials. In columns 3 and 4, I test

whether the direct comparison between trial versus expected and baseline yields confirms

associations, also produce certified seed, which is usually sold at the same price or slightly lower (e.g., net
for transportation costs). The CNP and agricultural extension services offer seed credit schemes in which a
farmer is given a quintal of certified seed in exchange of two quintals of the commercial seed they produce.
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these results. I find null effects for both models. This comparison is done using a binary

variable for cases in which the expected (or baseline) yield is higher than the trial yield, zero

otherwise, including for all treated farmers. Other similar results are also found comparing

above and below the median expectation gap, or by restricting the sample to only farmers

from the evaluation groups (not reported).

7 Main Results: Outcomes

In this section I report the impacts of new seed adoption on input use and productivity.33

The regression model is described in equation (9). I use endline survey data to compare the

plots where the new varieties were planted with other bean plots within the farm, conditional

on plot size. Table B2 in Section 4.2 for summary statistics of outcomes and key endline

variables.

7.1 Measurement and estimation

Second order effects of adoption are estimated using post-intervention survey data. This

information was collected at the end of the production season after the stage 2 offers were

made. In the south, offers were made in a period of three weeks before the start of the dry

season of 2022, and the endline survey was conducted in August and September 2022. For

the northern regions, offers spanned from October to December 2022, and the endline survey

information was collected from February and May 2023. Table B2 in the appendix reports

descriptive statistics of key variables from the endline survey.

Two important notes about these data. First, note that 15% of farmers did not plant

beans at endline, including 5% of those who purchased the new varieties during the inter-

vention. A higher share of farmers who reported not planting at baseline were part of the

Reference (24%) and Control groups (23%). Interviews with farmers and leaders of farmer

organizations reveal that many farmers decided to reduce the planted areas or not to plant

at all due to the significant increase in input prices, in particular chemical fertilizer.

Second, there is a substantial reduction in productivity compared with the baseline data,

from 19 to 12 quintals. Endline data also suggest high output losses caused by excess rain

during the same period. According to survey data, one third of the total output was lost

33An important limitation here is that only a small quantity of new varieties was offered to farmers (3kg).
For comparison, a rule of thumb is for farmers to plant one hectare with a quintal of seed (46kg). Given
that the germplasm used in this study was new, there was only a limited availability of seed for the offers,
especially by maintaining quality required for the study. The expectation was for farmers to use the 3kg of
new variety in the following season and produce enough seed to re-plant it at a larger scale. To study these
effects, a follow-up study is ongoing using data collected between November 2023 and March 2024.
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to extreme rain during the 2022-2023 season. In this section, I focus on adoption impacts

across experimental groups, so I do not consider changes in productivity or input use between

baseline and endline periods.

What is the impact of adopting the new seed?

The new bean varieties are expected to deliver improvements in productivity and drought

tolerance. Under normal conditions, the new varieties should provide similar yield levels as

the current varieties in the market, while they should perform better under drought stress.

First, I focus on the effects of adoption on input use. Evidence in the literature suggests that

adoption can crowd in complementary factor-deepening inputs (Emerick et al., 2016), which

implies that adoption can positively affect, for example, investments in fertilizer, labor, and

seed use. Second, I estimate the impacts on productivity. If the new varieties are indeed

more productive, we should observe that adoption has some positive effect on yields, either

by improving yield potential or by reducing output losses. Given the results on yields from

the agronomic trials, I do not expect to observe, on average, large yield improvements from

taking-up a new bean variety.

The effect of adoption on farming practices and productivity is estimated by comparing

plots planted with the new varieties with other bean plots within each farm, so as to control

for farm- and farmer- level unobservables. The regression model is described by equation (8),

where Ypij is outcome in plot p, farm i, and village j. Plot-level outcomes were collected in

the post-intervention survey, including output, biotic and abiotic related output losses, and

the quantity of inputs used. Variable take-uppij is an indicator variable that equals one for

the plot where the new varieties were planted, zero otherwise. C is a vector of plot controls,

including bean type (black or red), and an indicator variable that identifies farmers’ perceived

plot quality. The impacts on input use are estimated conditional on plot size. Variable ψ

captures farm fixed effects which controls for farm- and farmer-level variability. and µpij is

the error term.

Ypij = β0 + β1take-uppij + λCpij + ψi + µpij (8)

In this model, coefficient estimate β̂1 identifies the average treatment effect of planting

the new variety. The intercept captures the mean outcome value among all other bean plots

in the farm.

Are farmers better off accepting the recommended seed?

A key question is whether the magnitude of these effects vary with the treatment as-

signment. Matching farmers’ preferences with the appropriate new variety may have sizable

effects on productivity. To test this, I include an interaction term between take-uppij and an

indicator variable that identifies farmers who were offered the recommended variety (Breed-
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ers’ Choice and Reference group). This model is described in equation (9), where coefficient

estimate γ̂1 identifies the adoption effect among the Farmer’s Choice group, and γ̂1 the ef-

fect among farmers in the Breeders’ Choice group. Similarly, Cpij are plot-level controls, ψi

captures farm fixed effects, and µpij is the error term.

Ypij = γ0 + γ1take-uppij + γ2take-uppij ∗Recommendationij + λCpij + ψi + µpij (9)

7.2 Identification assumptions

Estimation of the causal effects of adoption relies on two identifying assumptions. First, that

farm fixed effects included in the model control for the potential endogeneity of adoption

decisions and outcomes. I include farm fixed effects to control for farmer- and farm-level

variability. Moreover, I use data from the Control group to increase statistical power and

to compare adoption impacts with information from a group of farmers from the same

population selected at random.

Another important identification challenge is farmers systematically plant the new va-

rieties in better- or worse-quality land (Emerick et al., 2016; Barrett et al., 2004). This

can lead to biased estimates of the impact of the new varieties’ adoption. In the baseline

and endline surveys, farmers were asked to map the plots in their farms and identify their

perceived plot quality based on simple rankings (i.e., worst, regular, or best quality). Based

on this information, I include an indicator variable that identifies both the best and worst

quality plot as reported by the farmer. The second identifying assumption is that these

observable covariates effectively control for plot selection.

7.3 Effects on productivity

The effects on productivity are reported in Table 4. I analyze the impacts on yields measured

as quintals per hectare. Models in columns 1 and 2 do not include for plot level controls, and

I find a negative coefficient for the adoption effect on yields planted with the new varieties,

which is driven by plots of farmers who were offered the recommended variety. Conditional

on plot characteristics (columns 3 and 4) and after including data from the Control group,

regression results show similar results but in the opposite direction.34

I find null effects of overall adoption but a significant differential adoption effect be-

tween treatment groups. Findings suggest that plots planted with the new seed variety that

matched farmers’ preferences are 3.46 to 3.75 quintals more productive than those planted

34Appendix table B9 reports estimates of local average treatment effects on productivity using the random
treatment assignment in stage 2 as an instrument. These estimates show the same pattern of results, although
in greater magnitude, as the ones reported in Table 4.
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with current seed. This marginal effect represents a 31% increase in productivity. The

coefficient for plots planted with the recommended variety is negative but not statistically

different than regular bean plots.

Table 4: Effects on seed productivity

(1) (2) (3) (4) (5) (6)
yield yield yield yield yield yield

take-up -1.28 0.57 1.01 3.75** 0.76 3.46*
(1.13) (1.86) (1.30) (1.82) (1.32) ( 1.87)

take-up x recommendation -2.42* -0.35 -0.60
(1.39) (1.49) (1.53)

Dependent variable mean 12.08 12.08 12.10 12.10 11.92 11.92
Plot controls no no yes yes yes yes
Farm fixed effects yes yes yes yes yes yes
R-squared 0.61 0.61 0.63 0.64 0.63 0.64
Observations 898 898 895 895 1113 1113
Sample treated treated treated treated all all

Notes: This table reports coefficient estimates from linear regressions at the plot level using post-
intervention survey data. The dependent variable is plot yield defined as quintals (100 pounds) per
hectare. Take-up plot identifies the plot where the planted the new variety purchased during the
intervention. Variable Recommendation identifies farmers who were offered the recommended variety
in the intervention. Plot level controls include labor use, fertilizer use, bean type (black or red), seed
quantity, and an indicator of plot quality to control for plot selection. Farm fixed effects included in
all specifications. Standard errors clustered at the farm level are reported in parenthesis. Significance:
*** p<0.01, ** p<0.05, * p<0.1.

7.4 Effects on input use

Table 5 reports estimates for the effect on input use conditional on plot size. The outcome

variables are fertilizer, labor, and seed use. Models in odd-numbered columns report the

overall effect of adoption relative to non-adopters and the Control group (Appendix Table

B7 replicates these results for the treated groups only). Even-numbered columns report

individual adoption effects for the Farmers’ Choice group, and the farmers who received the

offer of recommended seed variety chosen by the breeders (Breeders’ Choice and Reference

groups).

Results on input use show no overall effect of adoption on fertilizer (columns 1) and seed

use show (columns 5), nor differential effects of the recommendation (columns 2 and 6).

Models in columns 3 and 4 show a reduction labor used (measured in work-days) in plots

where the new varieties were planted, even after controlling for their smaller planted areas.
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Labor use in the adoption plots is a about quarter of the average plot in the sample. This

reduction in labor is similar between experimental groups.

Table 5: Effect on farm practices conditional on plot size

(1) (2) (3) (4) (5) (6)
fertilizer fertilizer labor labor seed seed

quantity quantity

take-up 369.65 269.53 -30.40*** -28.65*** 0.07 -0.08
(265.79) (235.30) ( 5.58) (8.94) (0.13) (0.20)

take-up x recommendation 422.29 -31.32*** 0.15
(296.58) (6.39) (0.15)

Dependent variable mean 118.47 118.47 41.35 41.35 1.91 1.91
Plot controls yes yes yes yes yes yes
Farm fixed effects yes yes yes yes yes yes
Sample all all all all all all
R-squared 0.50 0.50 0.67 0.67 0.95 0.95
Observations 1116 1116 1114 1114 1117 1117

Notes: This table reports coefficient estimates from linear regressions at the plot level using post-intervention
survey data. The dependent variables are fertilizer use in kilograms (columns 1 and 2), labor use in work-days
(columns 3 and 4), and seed use in quintals (columns 5 and 6). Take-up plot identifies the plot where the
planted the new variety purchased during the intervention. Variable Recommendation identifies farmers who were
offered the recommended variety. Plot level controls include labor use, fertilizer use, bean type (black or red),
seed quantity, and an indicator of plot quality to control for plot selection. Farm fixed effects included in all
specifications. Standard errors clustered at the farm level are reported in parenthesis. Significance: *** p<0.01,
** p<0.05, * p<0.1.

7.5 Effects on output losses

In Table 6 I examine adoption effects on output losses due to biotic and abiotic causes

to better understand what is driving the effects on productivity and given that I find no

intensification in input use. Output losses are defined as the percentage output lost in each

plot caused by biotic and abiotic shocks, as reported by farmers.35. Columns 1 and 2 report

effects on drought-related losses, columns 3 and 4 focus on yield losses related to biotic

threats (plagues and plant diseases), columns 5 and 6 focus on rain-excess yield loss, and

the last two columns report the combined percentage lost due to all causes.

Results show no significant coefficients estimates for drought- and biotic-related output

losses. I find that the new varieties reduced the losses caused by rain excess, and this effect

is consistent for plots with the preferred and recommended new varieties. However, the

35Farmers were asked the percentage of area that plot was affected by climate-related events and biotic
threats, and that resulted in in zero output.
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Table 6: Effect on output losses from biotic and abiotic shocks

(1) (2) (3) (4) (5) (6) (7) (8)
drought drought biotic biotic rain rain total total

take-up -0.13 -1.58 -0.68 -3.28 -5.36** -4.10* -6.23 -9.01*
(1.36) (1.62) (3.31) (3.34) (2.48) (2.34) (3.82) (5.27)

take-up x recommendation 0.70 0.80 -6.08* -4.65
(1.65) (4.43) (3.27) (4.59)

Dependent variable mean 1.86 1.86 22.56 22.56 33.77 33.77 58.17 58.17
Plot controls yes yes yes yes yes yes yes yes
Farm fixed effects yes yes yes yes yes yes yes yes
Sample all all all all all all all all
R-squared 0.69 0.69 0.67 0.67 0.81 0.81 0.71 0.71
Observations 1113 1113 1113 1113 1113 1113 1113 1113

Notes: This table reports coefficient estimates from linear regressions at the plot level using post-intervention
survey data. The dependent variable is plot yield defined as quintals (100 pounds) per hectare. Take-up plot
identifies the plot where the planted the new variety purchased during the intervention. Variable Recommendation
identifies farmers who were offered the recommended variety. Plot level controls include labor use, fertilizer use,
bean type (black or red), seed quantity, and an indicator of plot quality to control for plot selection. Farm
fixed effects included in all specifications. Standard errors clustered at the farm level are reported in parenthesis.
Significance: *** p<0.01, ** p<0.05, * p<0.1.

overall effect on output losses is only significant for plots planted with the preferred variety.

The average reduction among farmers in the Farmer’s Choice group is 9.0% less output

lost, whereas the reduction in plots planted with the recommended variety is 4.6%. A 10%

reduction in output losses corresponds to about 3 quintals of the average plot output, which

is similar in magnitude to the yield improvement caused by the adoption of the new varieties

discussed above.36

8 Mechanisms

8.1 Taking stock of the main results

In previous sections, I documented four five facts: (i) The recommended variety (SEF-

71) is highly preferred by farmers over other new seeds, but it is strictly dominated by

farmers’ current variety. (ii) Matching farmers’ preferences with their preferred new seed

variety significantly increases take-up relative to those who were offered the recommended

variety. (iii) Testing the new technology through agronomic trials in stage 1, prior to the

adoption decision, had no significant impact on take-up of the recommended variety. (iv)

Stage 1 productivity, farmer beliefs, and other purchases of higher quality seed (i.e., certified

36Table B8 reports results on output losses for the sample including only the treated groups.
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seed) do not predict take-up independently of the treatment. (v) The new seeds are more

productive among farmers who adopted their preferred new seed variety, which is not due to

input intensification but instead can be explained in large part by prevented output losses.

Taken together, these results indicate that the one-size-fits-all strategy that characterizes

seed releases by public breeding programs in many developing countries can lead to mismatch,

in which there may be low returns to experimentation for farmers, and the diffusion of new

agricultural biotechnology is limited.

8.2 Testing the model’s predictions

In this section I summarize and empirically test mechanisms that can potentially explain

the intervention’s treatment effects and the estimated mismatch. For most part, I ignore

adoption frictions from the demand side, considering that my experimental intervention

controls for well-known constraints by design. Instead, I focus on research constraints that

prevent breeders from developing new varieties that are suited to the local conditions of

farmers. Based on the theoretical insights described in section 3, I test how the mismatch

effect changes due to location-based changes in research effort, and whether the new varieties’

competitive advantage (increase drought tolerance) helps to mitigate the impact of mismatch

on adoption.

In the language of the model, research constraints bind when there is an upper limit to the

research effort innovators can invest in developing new technology. Given the specific char-

acteristics of public research, innovators mat be constrained in many other ways. Economic

and institutional constraints may limit further research and development, marketing, and

scale-up of the new seed. If innovators are unable to capture farmers’ heterogeneity or there

are no mechanisms motivating them to internalize it, new technologies will only respond to

the preferences of a specific group of farmers. Under these constraints, how representative

is that group of farmers, who they are, and how successful innovators are at targeting them

would determine the new technology’s performance and adoption.

Resource-constrained innovators may develop new technology optimized to certain loca-

tions (Proposition 2 in section 3.4). If the cost of adaptation to a given location is too high,

in terms of R&D effort, innovators face dis-economies of scope that reduce the number of

new technologies supplied to the market. Because of this, innovators develop technologies

that are only adapted to match the conditions of the few areas where the marginal cost

of adaptation is less or equal than the price of technology. In this case, take-up rates will

depend on how much research effort innovators invest. The greater the research effort to

adopt the new varieties, the greater the mismatch effect on adoption.

Furthermore, research constraints may also prevent innovators to properly target farmers’
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preferences. Most public breeding programs follow national mandates that force researchers

to consider socially important goals, such as food security or climate change adaptation, and

not just farmers’ preferences. Innovators are expected to channel research efforts towards

those goals, regardless of specific farmers local conditions. In the case of Costa Rica, the

new bean varieties are expected to have a competitive edge by protecting farmers against

productivity shocks related to drought-stress. Therefore, we should observe higher take-up

rates among farmers who experience drought events. This is particularly relevant for farmers

who restricted to adopt only the recommended variety, since the Farmer’s Choice group were

targeted with their preferred variety, which we can assume already meets farmers’ drought

resistance requirements. Thus, mismatch should be lower whenever the new seed varieties

have a competitive advantage over current varieties.

8.3 Heterogeneous mismatch effects

To test these predictions, I estimate the heterogeneous mismatch effects by exploiting loca-

tion and weather variability. First, I use the travel time from each village to the lab and

experiment station where the new varieties were developed and tested.37 Travel times were

calculated using Google Distance Matrix API and they include capture traveled distance,

average topographic, road and traffic conditions for a given route. I use this information as

an indicator of the relative effort innovators invest to get to know farmers’ local conditions,

or to test the new seed in real farms. Given that the experimental station is located Costa

Rica’s central valley, on average 245 km away from farmers’ location, the time traveled is also

rough measure of the differences in local weather and market conditions between farmers’

locations and where innovators work.

8.3.1 Location

Table 7 reports regression models estimating mismatch effect on take-up depending on how

far farmers are to the innovators’ lab using travel time. Column 1 reports a model estimating

the mismatch effect alone. Model in column 2 includes the travel time variable interacted

with the variable identifying farmers who received the recommended variety offer. Results

for this model shows a negative and significant mismatch effect that increases with travel

time. Column 3 shows the heterogeneous mismatch effects over the distribution of travel

times (in quintiles). The overall pattern shows null mismatch effects on farmers closest to

37These researchers also conducted several tests on farmers’ fields, most of them in the south (villages of
Veracruz and Changuena). All development, however, was done in the experiment station Fabio Baudrit
Moreno, part of the Universidad de Costa Rica in Alajuela, a city located 20km northwest of the capital San
Jose (10.0073° N, 84.2659° W).
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Table 7: Location-based heterogenous effects

(1) (2) (3)
take-up take-up take-up

Mismatch -0.178*** 0.098 0.006
(0.048) (0.164) (0.089)
(0.041) (0.232) (0.089)

Mismatch x travel time -0.062*
(0.036)
(0.051)

Mismatch x 2nd quintile travel time -0.201*
(0.102)
(0.081)

Mismatch x 3rd quintile travel time -0.195*
(0.110)
(0.098)

Mismatch x 4th quintile travel time -0.215**
(0.102)
(0.121)

Mismatch x top quintile travel time -0.259**
(0.102)
(0.133)

Dependent variable mean 0.432 0.432 0.432
Region fixed effects yes yes yes
Baseline controls yes yes yes
Trial controls yes yes yes
R-squared 0.046 0.053 0.058
Observations 542 542 542

Notes: This table reports coefficient estimates from a linear probability model
using Pr(take-up=1) as the dependent variable. The mismatch effect is the dif-
ference between targeted and untargeted groups. Region fixed effects included in
all specifications. Baseline controls include education level and farm size. Trial
controls include dummy variables for on-farm trials participation, seed replace-
ment and lost trials. Robust standard errors (SE) clustered at the village level
in parentheses. The standard errors corrected for spatial correlation using a dis-
tance threshold of 10km are also reported below each SE estimate. Significance
reported using robust SE: *** p<0.01, ** p<0.05, * p<0.1.

the lab (virtually zero for the first quintile coefficient), followed increasingly negative effects

for farmers farther away (up to -26 percent points for the farthest farmers).

Overall, results support the idea that there is differential adoption relative to innovators

locations as a proxy for research effort. A possible explanation is that farmers anticipate
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innovators being more successful in adapting the new variety to their local conditions if these

conditions are similar to the place where innovators develop new seed. Thus, farmers that

observe a greater effort by plant breeding programs in their communities are more likely to

accept the recommended offer, and that is why there are no significant differences relative to

the targeted group. Outside the innovators’ reach, or aside of frequently visited communities,

farmers may not trust the recommended offer because they expect it not to be a good match

for their farms. But if farmers can choose according to their preferences and experience,

reputational risk become less relevant in adoption decisions.

Besides research effort, two important questions are how heterogeneity across farmers’ lo-

cal conditions impact adoption? And does the new varieties’ competitive advantage increase

uptake of the new bean varieties? To answer these questions, I test whether specific weather

conditions explain differences between Farmer’s Choice and Breeders’ Choice groups. To do

so, I use atmospheric weather data for the three-year period from baseline to endline, as well

as survey data on extreme weather events.

8.3.2 Competitive advantage

An important expected feature of the new varieties is that they were developed to improve

drought and extreme heat tolerance compared to the current varieties in the market. During

the intervention these varieties were marketed as such to all farmers. There, I focus on

the differences across treatment groups due to low precipitation conditions. If researchers

are successful at prioritizing traits demanded by farmers, we should expect no differences

treatment groups because both the recommended and the most preferred variety, should

make the marginal adopter better off than the variety the farmer has been using. On the

contrary if drought events, for instance, are not relevant for farmers, we should expect their

demand for the new varieties to be lower among the Breeders’ Choice group relative to the

Farmer’s Choice group.

Table 8 reports results from regression models estimating drought-related heterogeneous

effects on take-up. These models include three new variables interacted with the Mismatch

indicator (i.e., variable that identifies the assignment into groups that received the rec-

ommended variety). Overall, according to baseline data, droughts are rare, given that as

reported in Table (see table B4) only 4% of farmers in the treated groups (all but the Con-

trol group) reported drought events at baseline. The first column reports the pure mismatch

effect as estimated using the model in equation (7).

The model in Column 2 adds an interaction term of mismatch with an indicator variable

equal to 1 for farmers who were exposed to drought events at baseline, zero otherwise. Results

in column 2 show that the mismatch effect among farmers who did not experience drought
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Table 8: Weather-related heterogenous effects

(1) (2) (3) (4)
take-up take-up take-up take-up

Mismatch -0.182*** -0.177*** -0.206*** -0.282***
(0.057) (0.058) (0.062) (0.076)
(0.041) (0.041) (0.040) (0.145)

Mismatch x Drought event -0.245**
(0.125)
(0.066)

Mismatch x Drought-related losses 0.001
(0.002)
(0.003)

Mismatch x Dry spell 0.001
(0.001)
(0.001)

Constant 0.468*** 0.465*** 0.498*** 0.459***
(0.093) (0.091) (0.096) (0.083)

Mismatch vs. Mismatch x Drought 0.074
p-value 0.602

Dependent variable mean 0.432 0.432 0.439 0.432
Village fixed effects yes yes yes no
Region fixed effects no no no yes
Controls yes yes yes yes
R-squared 0.205 0.210 0.208 0.050
Observations 542 542 515 542

Notes: This table reports coefficient estimates from a linear probability model using Pr(take-
up=1) as the dependent variable. The mismatch effect is the difference between the Breeders’
Choice and Farmers Choice groups. Location-specific (village or region) fixed effects included in
all specifications. Baseline controls include education level and farm size. Trial controls include
dummy variables for trial participation, certified seed purchases, and lost trials. Robust standard
errors (SE) clustered at the village level in parentheses. Robust standard errors clustered at the
village level in parentheses. The standard errors (SE) corrected for spatial correlation using a
distance threshold of 10km are also reported. Significance using corrected SE: *** p<0.01, **
p<0.05, * p<0.1.

is similar as before, around -18%. The coefficient for farmers who experience drought at

baseline indicates a higher mismatch effect of -24%, although these two coefficients are not

statistically different (p=0.602). These results are opposite to what is expected if the new

varieties have a competitive advantage over the current bean varieties in the market.

To estimate the intensive margin effect of drought events, the model in column 3 includes

47



an interaction between Mismatch and the percentage of drought-related output losses farmers

experienced at baseline. The coefficient for this interaction term is insignificant and virtually

zero. This finding implies that there is no relationship between higher drought related output

losses and mismatch. At baseline, the average yield lost due to drought events among treated

farmers is 5%. As before, the estimation of these models may be affected by zero-inflated

issues due to drought being a rare-event.

Model in Column 4 includes an interaction term between Mismatch and dry spell.

Dry spells are calculated using atmospheric weather data from the ERA5-Land Reanaly-

sis database (Hersbach et al., 2020) for the period between 2020 to 2022.38 Dry spell is

defined as the number of consecutive dry days (precipitation < 1 mm). The average dry

spell for the three-year period is 110 days, with a median of 122 days. Results show again

a coefficient for the interaction term that is not statistically different from zero, which is

consistent with results in column 1 and 2.

9 Discussion

The central policy concern of this paper is how to accelerate technical change in agriculture.

The supply of new crop varieties in many developing countries, particularly for minor and

orphan crops, is limited compared to farmer preferences and conditions. This constrained

supply of key inputs can hinder the modernization of agriculture by promoting a technological

mismatch.

This paper shows that preferences-attributes technological mismatch significantly reduces

the take-up of improved seeds among small-scale farmers. When farmers are matched with

their preferred crop variety, they adopt new seeds at higher rates and are more productive

compared to those who receive a blanket recommendation, which is the standard practice

when new crop varieties are released in lower-income countries. Moreover, I find evidence

suggesting that technological mismatch increases with research effort of adapting the new

seed to conditions of marginal locations.

What prevents suppliers from offering a more diverse menu of agricultural technologies

to increase uptake? In the absence of market mechanisms to guide innovation and eliminate

inappropriate technology, the direction of innovation is determined by the priorities and

constraints of innovators rather than by demand-side signals (Ruttan, 1977). Meanwhile,

many of the world’s agricultural innovators operate under conditions that limit their ability

to produce technology tailored to local market and agronomic conditions. Failing to account

38The resolution of the ERA5-Land data is 9km at the Equator. For each farm location, precipitation and
temperature were calculated as the daily average of the surrounding area (5 km radius).
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for farmers’ heterogeneity in agricultural research and development, or the lack of incentives

to do so, can lead to innovations that farmers are unwilling to adopt.

An intuitive solution to these issues is for researchers to directly incorporate market

conditions into plant breeding research. A better informed R&D may reduce the prevalence

of technological mismatch. Historically, this approach has involved using selection indices

that include economic parameters to evaluate the importance of variety traits in the market

(Smith, 1936). However, selection indices are rarely used as intended, primarily because

determining these parameters requires technical expertise and market information that may

be inaccessible to plant breeders.39

In addition, farmers’ preferences and innovators’ objectives may not be aligned with

farmers’ needs. Innovators in public centers are often mandated to consider broader societal

objectives beyond short-term farm profits, such as food security, biodiversity protection,

and climate change adaptation. Moreover, while farmers may respond to season-to-season

changes in climate or farming conditions, plant breeding cycles can take decades to complete.

This type of coordination problem is typically expected to be resolved by market com-

petition. However, when public research centers are the sole producers of new agricultural

technology, the lack of competing alternatives allows these innovators to develop technologies

that perform well in laboratory or experimental settings but may not benefit farmers op-

erating under different conditions. Furthermore, public researchers’ inability to profit from

their innovations through patents or other forms of intellectual property protection (Fuglie

et al., 2019) partially diminishes their incentives to develop more competitive technologies.

Another potential solution is to accelerate plant breeding by reducing the duration of

breeding cycles and increasing varietal turnover. Promising approaches to fast breeding

are already being proposed and tested (see Watson et al., 2018). A more diverse supply of

seeds may better match farmers’ preferences, thereby increasing the likelihood of adoption, as

demonstrated in this paper. However, conventional plant breeding is a slow learning process,

necessitating investments in complementary investments to support fast breeding approaches,

including advanced skills, specialized equipment, and trained personnel (Chaudhary and

Sandhu, 2024).

Alternatively, more targeted releases could prove highly effective. For instance, Bird

et al. (2022) report improved farm productivity when new maize varieties were intentionally

developed to match the conditions of agroecological niches in Kenya. As shown in this

paper, such approaches involve increased breeder-farmer interactions and local seed testing

39A survey conducted by the Feed the Future - Innovation Lab for Crop Improvement reveals that only
43% of 33 selected plant breeding programs from low-income countries of Africa, Asia and Central America
use conventional selection indices.
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under real-world farming conditions to prevent overestimating the performance of new crop

varieties.

In any case, solutions to reduce technological mismatch require that innovators learn

about farmers’ preferences. Yet, while most economic research focuses on learning failures

among farmers (Maertens et al., 2020; Hanna et al., 2014; Conley and Udry, 2010), there is

scant evidence about interactions between farmers and input suppliers (see, for example, Dar

et al., 2024), and even less evidence about how innovators use information when developing

new agricultural technology.

Part of the problem is the lack of data about innovation and adoption in agriculture,

which makes agricultural innovation a black box that is difficult to study. For example,

there is no systematic data collection on the release and adoption of new crop varieties in

low- and middle-income countries. A few limited examples exist, all supported by the CGIAR

network. Other initiatives, such as the PLUTO database by the International Union for the

Protection of New Varieties of Plants (UPOV), largely overlook releases in developing coun-

tries because innovators there have no incentives to report the results of their work to UPOV.

Therefore, better information and more research is needed to better understand how inno-

vators learn, the role of improved information provision, and the returns to experimentation

in the development of new agricultural technology.
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Appendix

A. Model Results

Preposition 1: When there is no research costs such that ei = 0 for all dimension, it
is trivial to show that innovators research every dimension j and choose z∗j (aj = 1, θj) =

argmaxzj Πj(zj, 1; θj), since Πj(z
∗
j , 1; θj) > Πj(zj, 0|θ̃j) for any j.

Preposition 2.a: Innovators learn to only optimize attributes that are worth researching.
For some ϵ and for each dimension j, innovators choose aj = 1 if Πj(zj, 1; θj) > Πj(z̃j, 0, q|θj).

Thus, innovators compare ρg(zj; θj)ωj − ei(1, θj, ϵ) > ρE[g(z̃j|θ̃)].
From equation (3) we get that E[g(z̃j|θ̃)] = 0. Thus, dimension j is worth researching if

g(zj; θj)ωj ≥ ei(ϵ)/ρ. At the margin, g(z∗j )ωj = ei(ϵ)/ρ. More generally, it follows that the
higher the research costs, the fewer dimensions are learned, so that there is higher special-
ization on certain attributes.

Preposition 2.a: Innovators develop a comparative advantage to produce technologies
optimized for certain locations (or groups of farmers) and not others.

From Proposition 2.a, we know that innovators optimize attributes of the technology
with lower research costs conditional on a given state of nature.

Assume further that ϵ consists of two elements (α, β) affecting research costs, and write
ei(α, β). Let α denote a random factor that captures context-neutral characteristics affecting
costs that applies to all innovators equally (e.g., fixed R&D costs), and β a fixed factor of
location-specific characteristics.

For simplicity, let β(l) be scaled so that a higher realization of β implies higher research
cost across all dimensions, that is, dei

dβ
> 0, and that the marginal cost is higher in locations

with higher values of l such that d2ei
dβdl

> 0. This way, location values l can be indexed to

represent different types of variability in spatial (e.g., geographic, ecological, environmental)
and market conditions (e.g., preferences and prices).

For some α, there exist some location l′ where ρg(z∗j )ωj − ei(a
∗
j , β(l

′)) < 0, that is, inno-
vator do not optimize attribute zj because learning θj in that location is too costly. Thus, by
following the logic in proposition 2.a, the innovator optimize technology ki for locations l < l′.

Preposition 3: There exist some location l′ such that farmers adopt technology ki for l
′ < l,

or continue using current technology k0 for l′ > l.
Given the technology price ρ, adoption occurs when innovators i produce technology

ki that is purchased by farmer u in location l. Let total output produced by the farmer
be yul(x, ki) = gi(z|θ)f(x), that is, the total factor productivity of f(x) is shifted by the
productivity gain produced by gi. If a technology i is not optimized for region l, then
gi(0|θ) = 1. Thus, the farmer adopts technology ki if V (x∗, k0) ≤ V (x∗, ki).

By comparing the first order conditions of each case, we get that gi(z|θ) = ρ
ρ0
> 1. On the

supply side, technology is optimized to region l if gi(z; θ)ω(z0) = ei(α, β(l))/ρ. Combined,
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the optimality condition for the market for ki to clear is

ei(α, β(l)) =
ω(z0)ρ

2

ρ0

Preposition 4: For large number of innovators with distinct research costs ei and e(α) <
ω(z0)ρ2

ρ0
for all l, enough technologies are optimized and produced for all farmers to adopt at

price ρ.
As illustrated in Panel B of Figure 3, comparing two innovators, innovator 2 has lower

marginal research costs (e′1 > e′2) so he is able to efficiently produce technologies that will be
adopted in greater number of locations. Given a sufficiently large N , there exist at least one
innovator for which e′N is small enough to supply all locations l ∈ {1, 2, ..., N}. Furthermore,
an arbitrary tie-braking rule can be used to determine what specific technology the farmer
adopts in regions supplied by more than one innovator.

Alternatively, two other cases are possible. First, condition e(α) < ω(z0)ρ2

ρ0
implies that

the context-neutral research costs need to be low enough for innovators to produce new

technology. If e(α) = ω(z0)ρ2

ρ0
a single innovator supplies the market and adoption occurs in

regions l < l′. Second, for all e(α) > ω(z0)ρ2

ρ0
there is no new technology produced in this

economy.

Preposition 5: Consider a case in which there is some exogenous upper limit ē such that

ei(α, β(l)) ≤ ē < ω(z0)ρ2

ρ0
.

Under such conditions two cases emerge. First, a trivial case that resembles the results
in proposition 4. For a sufficiently large number of innovators, there exist at least one i for
which ei(α, β(l)) = ē, such that he produces technologies for locations l < l′. Second, if only
a single innovator is in the market, we get that the number of adopting locations l(ē) = l̄ is
lower than would have been in absence of restriction ē.
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B. Tables

Table B1: Correlation between trait-level and overall rankings

Trait Timing Kendall τ p-value
cooking time 70-80 days 0.26 0.02
taste 70-80 days 0.49 0.00
marketability 70-80 days 0.66 0.00
yield 70-80 days 0.78 0.00
pest resistance 45 days 0.53 0.00
drought tolerance 45 days 0.51 0.00
maturity 45 days 0.13 0.16
plant architecture 30 days 0.47 0.00
overall performance post-harvest

Notes: This table reports the timing of the valuation (in days after
planting), the Kendall correlation coefficient (τ), and the estimated
p-value for a test with the null that the estimated τ is equal to zero.
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Table B2: Post-intervention Summary Statistics

n mean S.D. Min Max

(A) Farm level variables
Planted beans at endline (yes=1) 800 0.85 0.36 0.00 1.00
Farm size (ha) 680 8.56 11.82 0.00 98.00
take-up (yes=1) 516 0.42 0.49 0.00 1.00
Certified seed use (yes=1) 680 0.51 0.50 0.00 1.00

(B) Plot level variables
Number of plots 1117 1.49 0.70 1.00 5.00
Take-up plot (yes=1) 1117 0.15 0.36 0.00 1.00
Planted area (ha) 1117 2.08 2.83 0.01 33.00
Yield (quintal/ha) 1117 11.88 9.34 0.00 42.86
Fertilizer use (kg) 1116 118.47 711.69 0.00 17820.00
Labor use (work-day/season) 1114 41.35 46.73 0.00 475.00
Seed use (quintals) 1117 1.91 2.92 0.02 40.00
Total yield loss (%) 1117 58.25 28.82 0.00 100.00
Drough-related output loss (%) 1117 1.85 10.23 0.00 100.00
Biotic-related output loss (%) 1117 22.57 21.06 0.00 100.00
Rain-excess output loss (%) 1117 33.84 27.59 0.00 100.00
Bean type (black=1) 1117 0.54 0.50 0.00 1.00
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Table B3: Treatment effects on new variety take-up

(1) (2) (3) (4)
take-up take-up take-up take-up

Farmer’s Choice 0.284*** 0.284*** 0.281*** 0.299***
(0.087) (0.087) (0.087) (0.087)

Breeders’ Choice 0.102 0.102 0.103 0.119
(0.080) (0.080) (0.080) (0.080)

North region -0.209 -0.194
(0.194) (0.192)

Lost agronomic trial -0.181*
(0.101)

Constant 0.304*** 0.302*** 0.439*** 0.423***
(0.052) (0.075) (0.147) (0.147)

Farmer’s vs. Breeders’ Choice -0.182 -0.182 -0.180 -0.180
p-value 0.002 0.002 0.003 0.002

Dependent variable mean 0.432 0.432 0.432 0.432
Village fixed effects yes yes yes yes
Controls no yes yes yes
R-squared 0.200 0.197 0.198 0.205
Observations 542 542 542 542

Notes: This table reports coefficient estimates from a linear probability model using
Pr(take-up=1) as the dependent variable. The Farmer’s Choice received an offer that
matched their stated preferences. The Breeders’ Choice group was offered the rec-
ommended variety (SEF-71). The constant term captures the take-up rate for the
Reference group. Controls include education level and farm size at baseline. Fixed
effects at the village-level included, which was the stratification level for the random-
ization of the agronomic trials. Robust standard errors clustered at the village level in
parentheses. Significance: *** p<0.01, ** p<0.05, * p<0.1.
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Table B4: Stage 1 Sample Balance

Variable Evaluation Non-evaluation Difference
(n=352) (n=392) p-value

Age (years) 46.47 47.93 0.15
Gender (male=1) 0.83 0.79 0.17
Education level (1-8) 2.07 1.94 0.07
Income (USD/month) 317.58 298.83 0.59
Family size (# members) 3.51 3.48 0.79
Farming experience (years) 18.30 18.37 0.95
Bean yield (quintal/ha) 19.10 19.07 0.97
Planted area (ha) 5.43 5.47 0.97
Farm size (ha) 7.48 9.33 0.04
Bean plots (#) 1.74 1.70 0.55
Land renting (yes=1) 0.40 0.40 0.99
Input subsidy (yes=1) 0.22 0.19 0.39
Distance to exp. station (km) 146.24 146.37 0.91
Drought event (yes=1) 0.05 0.03 0.14
Drought-related yield losses (%) 4.98 3.60 0.15
Dry spell (days) 110.09 108.93 0.73

Notes: This table compares the farmers that evaluated the new varieties using agronomic
trials (Farmer’s choice and Breeders’ choice groups) and non-evaluation farmers (Business
as Usual and Control groups) at the baseline. The size of each subsample is determined by
whether it was possible to survey farmers for the baseline survey and does not reflect attrition
in stage 1. Assignment to each group was randomized at the village level. Differences are
estimated using differences in means tests. Dry spell is calculated as the consecutive number
of days with precipitation lower than 1mm per m2.
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Table B5: Sample comparison with CNP farmers population

Variable Sample CNP registry Difference
(n=800) (N=2959) p-value

Bean production (quintal) 91.40 91.36 0.99
Planted area (ha) 4.40 4.53 0.52
Yield (quintal/ha) 41.05 40.49 0.49
Seed quantity 75.81 77.17 0.77
Gender (female=1) 0.17 0.19 0.43
Associated (yes=1) 0.27 0.25 0.26
Region (north=1) 0.63 0.59 0.04

Notes: This table compares the study sample with the small- and medium-
scale farmers registered in the National Productive Council of Costa Rica
(CNP) for the 2020-2021 period. Differences are estimated using differences
in means tests. Bean production and yield include red and black common
beans. Areas only included those plots destined to bean production. A
quintal of seed refers to 46 kilograms bags. Seed quantity is the ammount of
certified seed used. Associated captures membership to any farmers group
(associations and cooperatives).
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Table B6: Productivity comparison between reference and new varieties

Yield (g)
variety mean std. dev. diff. p-value

(A) All trials (N=400, lost=17.6%)
Reference 2580 1543
SEF-42 2237 1278 -343 0.012
SEF-60 2598 1651 18 0.586
SEF-62 2421 1596 -159 0.155
SEF-64 2296 1371 -284 0.081
SEF-71 2533 1470 -47 0.320

(B) South region (N=140, lost=5.4%)
Reference 2538 1422
SEF-42 2465 1370 -343 0.785
SEF-60 2365 1638 -173 0.557
SEF-62 2574 1276 37 0.898
SEF-64 2540 1276 2 0.992
SEF-71 2699 1404 161 0.545

(C) North region (N=260, lost=24.1%)
Reference 2646 1680
SEF-42 2061 1198 -585 0.020
SEF-60 2762 1646 116 0.148
SEF-62 2340 1393 -306 0.185
SEF-64 2139 1393 -507 0.056
SEF-71 2382 1490 -264 0.487

Notes: Table compares the average yield of each new
variety in the agronomic trials versus the reference va-
riety (Cabecar). Each variety only appeared in half of
the testing sets that farmers received. Lost trials refer
to losses of agronomic plots due to mismanagement, ex-
treme weather, and biotic related events. P-values are
estimated using difference in means tests. Panel A re-
ports all trials pooled. Panels B and C report results
for the southern (Brunca) and northern (Chorotega and
Huetar) regions, respectively.
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Table B7: Effect on input use conditional on plot size

(1) (2) (3) (4) (5) (6)
fertilizer fertilizer labor labor seed seed

take-up 390.82 295.04 -30.67*** -29.20*** 0.10 -0.05
(266.31) (239.82) (5.29) (8.61) (0.12) (0.19)

take-up x recommendation 440.96 -30.40*** 0.18
(294.16) (6.08) (0.15)

Dependent variable mean 122.55 122.55 40.87 40.87 1.93 1.93
Plot controls yes yes yes yes yes yes
Farm fixed effects yes yes yes yes yes yes
Treated only yes yes yes yes yes yes
R-squared 0.54 0.54 0.68 0.68 0.96 0.96
Observations 897 897 896 896 898 898

Notes: This table reports coefficient estimates from linear regressions at the plot level using post-
intervention survey data. The dependent variables are fertilizer use in kilograms (columns 1 and 2),
labor use in work-days (columns 3 and 4), and seed use in quintals (columns 5 and 6). Take-up is defined
as a farmer buying the new variety during the intervention. Variable recommended identifies farmers who
were offered the recommended variety. Plot level controls include labor use, fertilizer use, bean type (black
or red), seed quantity, and an indicator of plot quality to control for plot selection. Farm fixed effects
included in all specifications. Standard errors clustered at the farm level are reported in parenthesis.
Significance: *** p<0.01, ** p<0.05, * p<0.1.
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Table B8: Effects on yield losses

(1) (2) (3) (4) (5) (6) (7) (8)
drought drought biotic biotic rain rain total total

take-up 0.01 -1.50 -0.80 -3.42 -6.16** -5.03* -6.95* -9.95**
(1.31) (1.70) (3.10) (3.39) (2.69) (2.97) (3.77) ( 4.94)

take-up x recommendation 0.79 0.57 -6.75** -5.38
(1.49) (4.09) (3.36) (4.61)

Dep. variable mean 2.00 2.00 22.33 22.33 32.75 32.75 57.08 57.08
Plot controls yes yes yes yes yes yes yes yes
Farm fixed effects yes yes yes yes yes yes yes yes
Treated only yes yes yes yes yes yes yes yes
R-squared 0.75 0.75 0.62 0.62 0.79 0.79 0.69 0.69
Observations 895 895 895 895 895 895 895 895

Notes: This table reports coefficient estimates from linear regressions at the plot level using post-intervention
survey data. The dependent variables are the percentage of yield lost due to drought (columns 1 and 2),
biotic-related causes such as plagues and pland disease (columns 3 and 4), rain excess (columns 5 and 6),
and the total yield lost (columns 7 and 8). Take-up is defined as a farmer buying the new variety during
the intervention. Variable recommended identifies farmers who were offered the recommended variety in the
intervention. Plot level controls include labor use, fertilizer use, bean type (black or red), and an indicator
of plot quality to control for plot selection. Farm fixed effects included in all specifications. Standard errors
clustered at the farm level are reported in parenthesis. Significance: *** p<0.01, ** p<0.05, * p<0.1.
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Table B9: LATE: Effect on productivity

(1) (2) (3) (4) (5) (6)
yield yield yield yield yield yield

take-up 1.19 7.51** -1.21 4.59** -0.71 5.05**
(1.79) (2.71) (1.10) (2.21) (1.07) (2.20)

take-up x recommendation -3.30 -5.25*** -4.73***
(2.03) (1.57) (1.55)

Dependent variable mean 11.82 11.87 12.28 12.32 12.00 12.02
Plot cotrols no no yes yes yes yes
Farm fixed effects yes yes yes yes yes yes
Observations 894 894 891 891 1108 1108
Sample treated treated treated treated all all

Notes: This table reports local average treatment effects from two-stage least square estimation at
the plot level using post-intervention survey data. The dependent variable is plot yield defined as
quintals (100 pounds) per hectare. Take-up is instrumented in the first stage using the treatment
assignment in the experiment. The recommendation variable identifies farmers who were offered
the recommended variety. Plot level controls include labor use, fertilizer use, bean type (black or
red), seed quantity, and an indicator of plot quality to control for plot selection. Farm fixed effects
included in all specifications. Standard errors clustered at the farm level are reported in parenthesis.
Significance: *** p<0.01, ** p<0.05, * p<0.1.
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B. Figures

Figure C1: Grain color differences
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Figure C2: Frequencies of varieties chosen in the agronomic trials
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Notes: This figure reports farmers’ stated preferences for the varieties in the trials. Each
bar corresponds to the percentage of farmers who chose a particular variety as the one they
wanted to plant in the next season.
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Figure C3: Agreement plots between trait and overall rankings.

Notes: Agreement plots reports pair-wise comparisons between the individual traits and the overall
performance (see de Sousa et al. (2023) for more details). The horizontal axis reports the average
log-worth, and indicates the likelihood of a single variety to be selected given its performance in that
trait. Average log-worth values to the right, imply better performance. The y-axis represents the level
of agreement of the new seeds with respect to the reference variety. The horizontal line indicates the
level in which both measures, the trait ranking and the overall performance agree completely.
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Figure C4: Yield distribution comparison between adopters versus non-adopters.
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Notes: Plots comparing the distribution of yield from the agronomic trials in quintals (100 pounds bags) per
hectare between farmers who purchased the variety offered in the intervention (Adopters) versus those who
rejected the offer (Non-adopters). Left panels show the Cumulative distribution, and panels on the right the
kernel density (Epanechnikov kernel and optimal bandwidth). The p-value from the Kolmogorov-Smirnov
tests on the equality of distribution is reported in the top-left corner of the cumulative distribution plot.
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Figure C5: Trials Scorecard
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