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Abstract

This paper studies the relationship between risk aversion and ketosis, a metabolic

disorder that negatively affects dairy farming. We identified farmers’ risk preferences

and their willingness to pay for information about cows’ health status (WTP) using a

lab-in-the-field experiment in Colombia. We also collected blood samples from dairy

cows to test for the prevalence of the disease. Results show a lower likelihood of keto-

sis in cows managed by risk-averse farmers, which is consistent with a self-protection

strategy under uncertainty. Further, experimental data show a positive relationship

between risk aversion and WTP, which is comparable to risk-reducing investments re-

lated to veterinary services or on-farm diagnostic equipment. Further, we mostly find

no significant differences in observed management across farmers’ risk profiles, with

the exception of some heterogeneous effects of farm practices related to concentrate

feed and preventative care.

JEL classification: C93, D81, O33, Q12, Q16.

Keywords: risk aversion, technology adoption, agriculture, dairy, Colombia.
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1 Introduction1

Many of the world’s low-income farmers are vulnerable to uncertain productive conditions2

but have limited options to manage risk. As a result, farmers often fail to adjust their3

decisions when confronted with biological and environmental threats. Moreover, attitudes4

and preferences towards risk shape farmers’ responses to production risks, which helps to5

explain why some farmers under-invest in more profitable technologies. Given the choice of6

adopting improved inputs or modern practices, farmers may be reluctant to adopt if the risk7

on the return on adoption is too high (Magruder, 2018; Foster and Rosenzweig, 2010). Thus,8

risk aversion is often found to have a negative impact on technology adoption, especially9

under insurance, credit, and information constraints (Liu, 2013; Dercon and Christiaensen,10

2011; Barrett et al., 2004).11

This paper studies a case in which risk aversion can promote the use of preventive agri-12

cultural technologies. Compared with technologies intended to increase yield potential but13

that are too risky for farmers to adopt, preventive or risk-reducing technologies are practices14

and inputs that reduce risk exposure to events affecting farm yields. An oft-cited case is15

pesticides application (Sexton, 2007; Horowitz and Lichtenberg, 1994). However, not all16

individuals benefit from these investments. Risk-averse farmers have incentives to minimize17

preventable downside risks such as those caused by crop pests, livestock diseases, or extreme18

weather events, such as seasonal droughts or floods (Koundouri et al., 2006). Consequently,19

these incentives should generate demand for risk-reducing technologies that reduce losses a20

form of self-insurance, or that reduce the the occurrence of risk events as self-protection.21

We focus in the case of pasture-based dairy farming in Colombia to study how risk pref-22

erences affect farm managements and outcomes. In particular, we study the relationship23

between risk aversion and the prevalence of ketosis, a metabolic disease affecting milk pro-24

duction, reproductive performance, and dairy cows’ health (Ospina et al., 2010; Chapinal25

et al., 2011; McArt et al., 2012). To do so, we estimated the relationship between risk aver-26

sion and the likelihood of ketosis in dairy cows housed on pasture-based dairies in Colombia.27
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We collected blood samples from early lactation cows and tested these samples for concen-28

trations of BHB, an organic compound of hepatic origin. This metabolite offers an objective29

metric to determine the prevalence of the disease, as the ratio of the number of positive cases30

(whole blood BHB ≥ 1.2 mmol/L) to the total number of tests conducted.31

Dairies in developing countries exhibit lower yields and higher production costs when32

compared with dairy systems of industrialized countries (Knips, 2005). To close this gap33

and improve yields per animal, farmers’ decisions on feed quality and frequency and the34

diagnostic and treatment of cattle diseases are crucial.1. However, in pasture-based dairies,35

especially those in developing countries, such tasks involve high uncertainty because the36

intake of forage per animal and overall feed quality are difficult to monitor and control. In37

consequence, this often results in lower yield per cow, lower profits, and potentially higher38

risks of nutritional deficiencies in dairy cows (Gillespie and Nehring, 2014; Hanrahan et al.,39

2018). For example, Colombia’s dairy industry is comprised of primarily pasture-based40

farms that struggle to improve quality and yields to compete in increasingly globalized dairy41

markets (Carulla and Ortega, 2016; Villa-Arcila et al., 2017).42

Similar to other settings, the extent to which risk affects outcomes is difficult to determine43

without an experimental design. So, we conducted a lab-in-the-field experiment to elicit44

the risk preferences of dairy farmers. Using lotteries, we present farmers with a trade-off45

between the cost of better feeding practices and the risk associated with the disease. Farmers’46

choice set in the experiment corresponds with situations in which farm management decisions47

represent upfront costs while benefits are uncertain. To allow for different levels of risk, we48

vary lottery probabilities in the game as an analogy for changes in the risk of the disease.49

In addition, we included a treatment condition in which we capture whether farmers have a50

positive willingness to pay for information about their cows’ health status. The information51

provided simulates a keto-meter, the testing device we used to determine the prevalence of52

1For instance, good early-lactation management should result in an adequate transition from non-
productive to productive periods that minimizes metabolic disorders and other health problems, as a way to
improve the productivity of dairy farms (Yepes et al., 2020; Ospina et al., 2013; Chapinal et al., 2011)
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ketosis. This design helps us identify farmers’ risk profiles using a framing tailored to this53

specific context, relating farmers’ feeding practices with the likelihood of metabolic disorders.54

Our results show that risk aversion is negatively associated with the prevalence of ketosis.55

We compare differences in the likelihood of ketosis across risk profiles, controlling for a rich set56

of farming practices, cow-level characteristics, and location-specific fixed effects. Consistent57

with an Expected Utility model, we find a lower prevalence of ketosis on cows managed by58

risk-averse individuals. Results indicate that during periods of high energetic stress, feeding59

and cow-level characteristics are associated with ketosis. For instance,the gradual milking60

reduction before the next lactation period decreases the likelihood of the disease, but it61

reduces yields in the short term. Further, higher distances to the milking parlor (which62

increases cows’ energetic demands) and higher parity numbers are positively correlated with63

ketosis.64

A possible explanation for these results is that risk-averse dairy farmers adopt practices65

that prevent metabolic diseases affecting cow’s milk production. This idea is consistent with66

the idea that preventive health practices are risk management tools, since animal diseases are67

major barriers to higher dairy yields in developing countries (Hernández-Castellano et al.,68

2019). To test this explanation we focus on feeding practices, given that nutritional mis-69

management directly affects cows’ metabolic conditions. Experimental results show that70

risk aversion is positively correlated with farmers’ WTP for information about cows’ health71

status. Farmers’ willingness to pay for information is a proxy for their demand for such72

testing devices or similar diagnostic services. Using observational data from surveys we find73

no significant mean differences for most farm practices between risk-averse and non risk-74

averse farmers. However, about 60% of ketosis cases in our sample occur in farms using no75

feed concentrates during the fresh period (a few weeks after calving), and results show that76

risk-averse farms are more likely to use some share of concentrates in cows’ diet.77

This paper is closely related to the agricultural technology adoption literature. Growing78

evidence for the demand for risk-reducing technologies has been documented in low-income79
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countries. For instance, Emerick et al. (2016) find that the introduction of an improved80

drought-resistant rice variety leads to investments in modern practices in India. Shimamoto81

et al. (2017) shows that risk-averse farmers in Cambodia are more likely to adopt devices82

for moisture control in rice crops. In Ghana, Asravor (2018) reports that risk aversion83

increases the use of improved seeds and organic fertilizers, and Crentsil et al. (2020) find84

that risk-averse farmers were earlier adopters of fishing innovations improving disease and85

contamination resistance. In this paper, we show that risk aversion is related to a lower86

prevalence of a disease negatively affecting dairy yields. We also find evidence for practices87

help farmers manage cows’ health status, including the use of commercial feed concentrates88

which are largely underutilized in pasture-based dairies of low-income countries (FAO et al.,89

2014; Duncan et al., 2013).90

Second, we contribute to the experimental economics literature on risk preferences. Our91

findings suggest that experimental risk measures can explain the differences in the likelihood92

and management of preventable events affecting agricultural production. These results sug-93

gest a link between laboratory experiments and field observations to better understand how94

individuals’ risk preferences affect economic outcomes when no direct observation or ran-95

domized evaluation is feasible. In addition, our risk profile classification procedure combines96

Eckel and Grossman (2002) and Holt and Laury (2002) designs, two widely used methods97

for risk elicitation, to incorporate changes in risk probabilities. In doing so, we provide a98

framework to classify risk profiles based on more precise calibration of the implied relative99

risk aversion parameters.100

This paper is organized as follows. We first present a theoretical model explaining self-101

protection and self-insurance as risk-reducing strategies. We then present the experimental102

design we used to elicit the risk preferences of dairy farmers. In sections three and four,103

we describe the data and our empirical strategy to estimate the relationship between risk104

preferences and the prevalence of ketosis. In section five, we report the main results on105

disease prevalence, willingness to pay for information, and farm management. In the last106
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section, we present a discussion of our results and relevant implications.107

2 Risk-reducing incentives108

We build an endogenous risk model to characterize farmers’ behavior under uncertainty.109

Productive risk in dairy farming may arise from several sources. For instance, metabolic110

diseases affecting dairy cows, such that some cows are either sick or healthy. Payoffs are111

lower when cows are sick because the disease reduces yield, and its treatment increases112

production costs. While farmers can treat sick cows individually, most inputs and practices113

in pasture-based dairy production systems are determined at the herd level. So, investments114

are required to reduce the disease risk among all cows in a given herd. These investments may115

include inputs such as the adoption an improved variety of forage or feed supplements with116

better nutritional content (which increases yield potential). Alternatively, farmers may take117

preventive action by consulting animal nutritionists to formulate adequate diets, or hiring118

veterinary services to diagnose health problems (reducing the prevalence of the disease).119

We model the decisions of farmers maximizing the expected utility of inputs and prac-

tices that reduce the likelihood and impact of risk events affecting yields (see equation

1). Farmers choose a level of inputs X and pre-event actions s to maximize the expected

utility of consumption, EU(c), which we assume to be function of farm profits such that

c = Π(f(X, s;ω), p). Technology f in value terms is assumed to be increasing and convex in

X and s. Per-unit input costs are px and the cost of preventive action is ps. This framework

is closely related to models developed to rationalize pest and disease control in agriculture

Sexton (2007).

max
X,s

E
[
U
(
f(X, s;ω)− pss− pxX

)]
(1)

The production technology is given by f(X, s;ω) = h(X,ω) (1− d(s)) with partial deriva-120

tives fX > 0 and fs > 0. h(X,ω) is potential output as a function of inputs X such that121

hX ≥ 0, and a random parameter ω affecting disease damage independent of X. Parameter122
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ω is indexed with respect states of nature. A higher realization of ω implies states of states of123

nature with high disease damage, hence less output. The term d(s) captures the probability124

of risk event occurrence as the fraction of damaged output (equivalent to the percentage of125

sick cows out of the total herd). This probability is a function of pre-event action, which126

reduces the likelihood of damage such that d(0) = d0 and ds(s) < 0.127

Farmers can (i) self-insure by reducing the severity of the risk event, and (ii) self-protect128

by reducing its likelihood (Archer and Shogren, 1996; Ehrlich and Becker, 1972). Post-event129

actions can work as self-insurance by reducing the the losses caused by risk events when they130

occur. For instance, inputs reduce the negative effects of a disease on output by increasing131

yield potential. An input is risk-reducing if the second derivative fX,ω(X, s;ω) < 0, meaning132

that inputs increase production less when disease damage is high (Horowitz and Lichtenberg,133

1994).2 This implies that X is risk-reducing if fX,ω = hX,ω(X,ω)(1− d(s)). Since (1− d(s))134

is a non-negative fraction, fX,ω and is negative if the marginal product of inputs is lower in135

less favorable states of nature such that hX,ω < 0.136

Alternatively, farmers self-protect by influencing the conditions in which risk events hap-137

pen to reduce their likelihood of occurrence. Preventive action always reduces risk since138

fs,ω = −hω(X,ω)ds(s) < 0 for any non-zero value of s, X, and ω. Therefore, preventive139

action reduces damage more in bad states of nature, when the damage is high, via a lower140

fraction of damaged output. The main difference between X and s is that while inputs X141

go into production regardless of the damage level, pre-event actions s only happen to reduce142

the likelihood of damage. Thus, some inputs may not be risk-reducing, since fX,ω may be143

zero or positive depending on the type of input used (Horowitz and Lichtenberg, 1994).144

A risk-reducing strategy can also be defined as an input X or action s that a risk-averse145

producer will use more than a risk-neutral producer (Leathers and Quiggin, 1991). To see146

this, consider for instance the first order with respect toX is δEU(c)
δX

= E
[
U ′(c)

(
fX−px

)]
= 0.147

2Horowitz and Lichtenberg (1994) model for pest control includes other sources of uncertainty, in which
yield potential is also affected by random factors independent of X and s. The definition of risk-reducing in-
puts in those cases cases when yield output is uncertain require additional assumptions about the correlation
between those random factors and ω to determine the sign of fX,ω.

7



The second partial derivative of this condition with respect to ω is148

δEU(c)

δXδω
= E

[
U ′′(c)

(
fX − px

)
fω
]
+ E [U ′(c)fX,ω] (2)

where fw < 0, U ′ > 0, fX ≥ pX , and fX,ω < 0 for risk-reducing inputs. The first term in in149

(2) is the expected income effect, which does not affects risk-neutral individuals since U ′′ = 0150

, whereas U ′′ < 0 for the risk averse. The second term is the pure marginal productivity151

effect. This change in productivity affects all individuals regardless of their risk preferences.152

Therefore, changes in risk-reducing input use leads to higher expected utility for the risk-153

averse in worse states of nature.154

This model suggests then that risk-averse individuals have more incentives to make risk-155

reducing investments. As long as these investments are cost-effective at reducing risk, risk-156

averse farmers get a higher expected utility from these investments whereas risk-neutral and157

risk-seeking behaviors get lower or even get negative expected payoffs. Risk-reducing invest-158

ments are an alternative to commercial insurance covering the potential losses from harmful159

productivity shocks, especially under incomplete insurance markets. Notably, farm insurance160

is rare in low-income countries, and most policies rarely cover animal health. Moreover, if161

the information about the underlying risk is limited, risk events may become non-divisible,162

such that insurance providers may not satisfy farmers’ demand for risk reductions. In situ-163

ations like these, self-insurance and self-protection strategies offer a way to meet a demand164

for practices and inputs that mitigate downside risks.165

Based on this framework, we formulate two expected effects for the case of dairy farmers166

facing risk of events such as metabolic diseases. First, risk-averse are more likely to invest167

in risk-reducing strategies than their non-risk averse counterparts. We should observe dif-168

ferences in practices that mitigate the prevalence of diseases across risk-profiles as a result,169

either via self-protection or self-insurance. In particular, the willingness to pay for informa-170

tion (WTP) about cows’ health status is an investment that can potentially reduce risk. As171

a result, the WTP is expected to be higher among risk-averse farmers.172

8



Second, we expect that preventive self-protection strategies decrease the likelihood of173

risk events such as diseases. Therefore, the prevalence of ketosis should be lower in farms174

managed by risk-averse individuals, conditional on all other factors affecting the prevalence175

of the disease independent of management. While some inputs and practices may reduce176

productivity risk, they do not affect the occurrence of risk events. So, pure self-insurance177

strategies should have no effect on the prevalence of ketosis.178

Note that risk-reducing strategies are correlated with endowments, which suggest that179

herd-level management in pasture-based dairies mediates in farmers’ ability to control dis-180

eases. The cost of inputs increases with heard size, whereas the cost of some preventive181

actions can be independent of the production scale. This is important because risk aversion182

is expected to decrease as endowments increase, such as income, land, and herd size. So,183

the benefits of risk-reducing inputs may disproportionately change with scale, which could184

make it less attractive to farmers with bigger farms.185

3 Experimental design186

We based our experiment on the design proposed by Eckel and Grossman (2002, EG hence-187

forth) to elicit risk preferences, which we modified to capture effects on behavior due to188

changes in risk probabilities. In the EG design, participants choose one lottery from a set189

of binary lotteries with the same probability for both outcomes (p = 0.5) but with differ-190

ent expected payoffs. This framework allows us to empirically identify risk preferences by191

comparing the lotteries in a choice experiment, using the constant relative risk aversion pa-192

rameter r as a metric. Individuals are classified as risk-averse if the constant relative risk193

aversion (CRRA) parameter implied from their choices yields r > 0, risk-neutral if r = 0,194

and risk-seeking when r < 0.3195

We framed lotteries in our experiment to be analogous to the risk associated with feeding196

3Using a group lotteries the CRRA parameter allows to identify preferences over risky options based on
the cutoff points between pairs of adjacent lotteries (Dave et al., 2010). This classification process to derive
r is depicted in appendix figure A1 for a well-behaved utility representation of preferences.
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decisions made by farmers. Thus, the experiment mimics the economic trade-offs between197

higher investments in feed quality to reduce the likelihood of metabolic diseases. We simulate198

this environment by presenting lotteries as feed quality menus4, in which payoffs depend199

on the prevalence of the disease, p. Farmers decide over three feed quality options (high,200

medium, and low) which yield different ranges for the CRRA parameter.5 The experiment’s201

framing conveys the idea that higher quality feeds reduce the monetary losses caused by the202

disease, at the expense of higher production costs. Contrary, cheaper and lower quality feed203

decrease costs, but it may also reduce overall profits if the disease is present on the farm.204

Although the EG design helps us profile risk preferences, the classification of risk profiles205

depends entirely on a given risk probability p. Changes in the likelihood of outcomes can206

lead to different profile assignments, especially for ranges of r that include indifference points207

between lotteries. For instance, it may not be possible to distinguish between risk-neutral208

and risk-seeking behaviors when the CRRA parameter yields a range of r ≤ 0.209

To address this, we follow the logic behind the price list design (Holt and Laury, 2002),210

varying the probabilities p to calculate the implied CRRA cutoff points for three different211

sets of feed quality menus. For simplicity and since no prior information was available about212

the prevalence of ketosis in the study regions, we established three risk conditions in the213

experiment. The low-risk condition is when 20% of the herd is at risk of developing the214

disease, 50% in the medium-risk, and 80% in the high-risk condition. While these risk levels215

might be too high to represent the likelihood of an actual metabolic disease of this type in216

our study context, these levels aim to depict relative differences in prevalence levels in a way217

that makes it easy to distinguish between available options.6218

Table 1 shows information about payoffs and probabilities of the lotteries as presented219

to the farmers. For each risk condition, participants decide over three feed quality options.220

4In our experiment, feed quality refers to the combinations of quantity and frequency of different types
of food (forage, feed concentrates, or supplements).

5These lotteries have the same characteristics of the lotteries presented in figure A1 in the appendix
6As shown by Dave et al. (2010), simpler risk elicitation tasks are better suited for contexts of low

numeracy, which is often the case in rural communities in low-income countries.
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Table 1: Payoff tables by risk condition

Feed Payoff if Payoff if CRRA
quality cow is Pr(healthy) cow is Pr(sick) E[x] S.D. parameter
option healthy sick cutoff points

20% risk
high 17 0.8 14 0.2 16.4 7.6 6.26≤ r
medium 25 0.8 12 0.2 22.4 12.4 0≤ r ≤6.26
low 27 0.8 4 0.2 22.4 14.7 r ≤ 0

50% risk
high 17 0.5 14 0.5 15.5 1.1 3.02≤ r
medium 25 0.5 12 0.5 18.5 4.6 -1.18≤ r ≤3.02
low 27 0.5 4 0.5 15.5 8.1 r ≤ -1.18

80% risk
high 17 0.2 14 0.8 14.6 5.5 0≤ r
medium 25 0.2 12 0.8 14.6 3.2 -2.47≤ r ≤0
low 27 0.2 4 0.8 8.6 1.6 r ≤ -2.47

Notes: Payoffs in USD. Letter r denotes the constant relative risk aversion (CRRA) parameter.

Additional information such as expected values, standard deviation, and CRRA cutoff points221

are included in table 1 but was not shown to the participants. These statistics are used in the222

EG procedure to identify risk preferences. For example, when the probability is p = 0.2, a223

risk-averse individual would choose option high because it has the lowest standard deviation,224

giving up potential gains in terms of expected value. A risk-neutral individual would choose225

the highest expected value, either by selecting either medium or low. If individuals select226

low, having the option to choose medium and get the same payoff with a lower standard227

deviation, they should exhibit risk-seeking behavior. However, this logic does not apply228

to all three risk conditions. Once the risk level increases, a classification procedure would229

require incorporating several cutoff points of the CRRA parameter.230

We combine ranges of the CRRA parameter to construct profiles that account for the231

change in the risk levels. Using the procedure presented in figure 1, we classify subjects232

into three profiles.7 The basic case is when individuals choose the same option in all three233

7Technically, up to five profiles can be derived using this classification process, including two degrees of
risk-averse/seeking behaviors. These profiles come from each of the five CRRA cutoff points, as presented
in table 1. For instance, a higher degree of risk aversion derives from choices that yield r ≥ 6.26 than for
those that imply 3.02 ≥ r ≥ 6.26.
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risk conditions. If the high-quality option is always selected, the farmer is inferred to be234

risk-averse. In this case, the decision in the lowest prevalence condition provides enough235

information to determine the risk profiles. On the other hand, risk neutrality (seeking)236

requires that the medium (low) quality option is always chosen. In this case, the classification237

procedure yields the same profiles as if subjects were classified using the regular EG design238

(Eckel and Grossman, 2002).

Figure 1: Risk profile classification based on lottery choices

feed
quality

medium, low

low
low seeking

high, medium neutral

medium neutral

high averse

high averse

Risk level
0.2 0.5 0.8

239

Different combinations of choices provide more information about the individuals’ risk240

preferences. For instance, a risk-averse individual is someone who chooses medium when241

p = 0.2 and chooses high in both p = 0.5 and p = 0.8 necessarily. This is because the242

implied CRRA is such that 3.02 ≤ r ≤ 6.26, according to these choices. Figure 1 shows243

the classification procedure starting from the lowest prevalence-risk level, but results are244

independent of the order in which decisions are made. Finally, failure to be classified into a245

profile indicates a behavior inconsistent with the Expected Utility Theory. This situation is246

similar to switching back to a greater risk gamble after choosing the safe option in the Holt247

and Laury design (2002).248

Finally, we included a treatment determining if there is a positive willingness to pay249

(WTP) for information about the health status of cows. Using the same basic experimental250

setup, we want individuals to reveal a positive WTP as a proxy for their demand for in-251
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formation. To do so, individuals can pay a fixed amount of money, c to know whether the252

cow is sick or healthy before choosing over the feed quality lotteries. Once the cow’s health253

status is known, there is no uncertainty about the prevalence of the disease, and feed quality254

payoffs are lower than in the baseline case but certain.255

The net benefit of this decision is given by comparing the expected payoff of paying for256

information of a cow’s health status versus playing the game under the baseline conditions257

explained earlier. Once farmers know their cows’ health status, they can select a higher258

payoff for each case, either $27 or $14. For each probability p, using values from table 1, the259

expected payoff of paying for information is then E[x|c] = p(27− c) + (1− p)(14− c). Each260

term corresponds to the utility of maximum payoff if the cow is healthy (sick), times the261

probability of a healthy (sick) cow. Then, the price of information was defined as c = $2,262

such that E[x|c] equates the expected payoffs and standard deviations of the medium in each263

lottery set (see table 2).

Table 2: Expected payoffs net of payment for information

Risk condition High payoff: Pr(healthy) Low payoff: Pr(sick) E[x|c] S.D.
27−c 14−c

1: 20% 25 0.8 12 0.2 22.4 12.4
2: 50% 25 0.5 12 0.5 18.5 4.6
3: 80% 25 0.2 12 0.8 14.6 3.2

Notes: Payoffs in USD.

264

Note that this treatment does not change the game’s payoff structure. Since risk proba-265

bilities remain the same, the only change is the amount of information available to farmers266

when making feeding decisions. By demanding this information, farmers can make better267

feeding decisions once the cows’ health status is revealed. However, given the expected pay-268

offs presented in table 2, paying for information does increase the expected payoffs since269

there is no difference in choosing the medium-quality option and rejecting to pay c before270

knowing the lottery’s outcome.271
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3.1 Field protocol272

The study was conducted in three of Colombia’s main dairy farming regions (Cundinamarca,273

Antioquia, and Caldas).8 We used field methods to collect information on three levels of274

analysis: cows, farms, and farmers. First, a group of veterinary students visited 56 farms275

and collected blood samples from more than 900 dairy cows to be tested for concentrations of276

BHB using a point-of-care device and determine the farm-level prevalence of ketosis. Farmers277

were recruited to participate through the extension program of two local universities using278

convenience sampling. From the pool of farms serviced by the universities, those willing to279

participate and meet two criteria were invited to be part of the study. These criteria are i)280

the farm has records of production, management practices, and basic cattle health status;281

ii) the farm herd size was large enough to guarantee a number of early lactation cows to be282

tested. In section 3, we discuss how farms in our sample compare to a conventional dairy in283

Colombia.284

We conducted a blood test to estimate the level of ketone bodies in each cow. Specifically,285

we used a portable ketone meter to measure the β-hydroxybutyrate (BHB) blood concentra-286

tion in dairy cows between 1 and 42 days after calving. A BHB blood concentration ≥ 1.2287

indicates that a cow has ketosis. This threshold is the standard in most research studying288

ketosis prevalence in dairy cows (Ospina et al., 2010; Chapinal et al., 2011; Oetzel, 2004).289

However, cows with ketosis may not present clinical signs of the disease. Instead, ketosis290

may cause a drop in milk production while increasing the risk of developing other diseases291

and reproductive problems. Hence, the prevalence of the disease directly affects farm man-292

agement via low productivity and cattle health-associated costs. In addition to the blood293

sample, information related to the cow’s last calving and body condition score (BCS) for294

each cow was collected, which is an indicator of the general nutritional status of each cow295

by using a standardized five-points scale (Edmonson et al., 1989).296

8The protocols for this study were approved by the Institutional Review Board for Human Partici-
pants (protocol XXXXXXXX), and the Animal Care and Use Committee (protocol XXXXXXXX) at
XXXXXXXX.
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After the animal sampling, a risk elicitation experiment and questionnaire were conducted297

with farmers. This survey collected information on farm characteristics and management,298

focusing on management practices before and after calving. Additionally, farm managers299

(whoever was in charge of the cows feeding decisions) took part in the choice experiment. A300

show-up fee of $5 USD was offered to each farmer before the game started. The instructions301

were read to each farmer in private, and the same researcher, a native Spanish speaker,302

conducted each session face to face with all farmers.9303

In the experiment, farmers were informed that they had to make a total of six decisions.304

The first set of three decisions comprised the data used to establish the risk profiles of305

farmers. The second set of decisions were used to conduct a willingness to pay treatment306

for information on the health status of cows. The instructions explained that rounds were307

independent, such that the decision made in a given round did not affect the game dynamics308

or payoffs of any other round. Within each of the two sets of rounds, the distribution of risk309

levels was randomized to minimize ordering effects.310

In each of the first three rounds, participants were asked to choose one of three options311

of feed quality to use on their farm. As presented in table 1, each quality option had two312

payoffs, a higher payoff if the cow is healthy and a lower payoff if the disease is present.313

Participants were not given information on the cow’s health status (healthy or sick) before314

deciding. Instead, a lottery determined this at the end of the game following the probabilities315

of each risk condition. For example, in the low-risk condition, the probabilities were framed316

as if “two out of ten cows in your farm are currently at risk of developing the disease”. Also,317

they were told that only one of the six decisions will be used to determine final payoffs but318

that each round has the same possibility of being randomly selected.319

In rounds 4 to 6, farmers were asked if they were willing to pay a fixed amount equivalent320

to $2 USD conduct the lottery before making their feed quality decisions. The new rounds321

were played as before, and the main difference is the reduction of each lottery’s payoff,322

9An English version of the experiment’s instructions are available as supplemental materials at the end
of this document. The Spanish version of the instructions is available upon request.
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provided the farmer decided to pay to know whether the cow was sick or healthy. A new323

version of table 1 was presented to the farmers, showing the payoffs of each outcome after324

subtracting $2. If they agree to pay this amount, we run a lottery to determine the cow’s325

health status at the end of each round. After knowing the cow’s health status, farmers326

decided on feed quality based on the same three quality options explained before.327

Once all decisions were made, a bag filled with balls was used to determine the final payoffs328

of the game. First, six balls numbered from 1 to 6 were used to determine the round to be329

paid. Then, ten balls were divided between white balls representing the cow being healthy330

and red balls indicating the cow was sick. The risk condition determined the number of balls331

of each color group. For instance, when the risk condition was 0.5, half of the ten balls were332

white, and the other half were red. First, each participant randomly selected a ball from333

the bag to choose the round to be paid, and then they picked another ball to determine334

whether their cows were healthy or sick. After the lotteries, a short survey on socioeconomic335

information of farmers and their households was conducted. Finally, payments in cash were336

made according to the experiment payoffs.337

4 Data338

Figure 2 reports the distribution of choices in the risk experiment, showing that the farmers’339

choices change with the risk level. In the low-risk condition (p = 0.2), about 25 percent of the340

farmers chose the low-feed quality option. However, the low feed quality share shrinks as the341

risk of the disease increases. High is the option selected more often, 40 to 80 % of the time342

in all risk levels. In the moderate-risk condition, when p = 0.5, there is almost an even split343

between high and medium options. The share for the medium quality option expands when344

p = 0.5, but it has a large reduction when p = 0.8. This distribution of choices shows that345

the risk profile classification is dependent on the risk level, thereby affecting the estimation of346

the implied CRRA parameters. Furthermore, this distribution of choices suggests that there347

16



is the possibility of misclassification if only one probability condition is used to determine348

risk profiles. Thus, these experimental results validate the inclusion of several risk levels in349

our experimental design.350

Figure 2: Distribution of choices by risk level
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Following the classification procedure explained in section 2, the distribution of risk351

profiles is as follows: 65% of the managers are profiled as risk-averse, 26% as risk-neutral,352

and 9% as risk-seeking.10 This distribution is somewhat similar to the literature when353

compared to risk elicitation studies using a single probability.11 In the treatment rounds, we354

find that 37% of farmers decided to pay for information in the 0.2 risk condition, 64% in the355

0.5 risk condition, and 45% in the 0.8 condition.356

Table 3 presents summary statistics of the variables used in our analysis. The top panel357

includes information at the animal level. Using estimates for the BHB concentration, we358

established that 4.3% of the cows in the sample were diagnosed with some ketosis level.359

The greatest number of cows with ketosis was found in Cundinamarca (9.4%), followed by360

10We were unable to determine the risk profile of only one farmer whose decisions were inconsistent with
the classification procedure. For this reason, information for this farm is not included in the data set used
for estimation.

11For instance, Eckel and Grossman (2002) find in their no-loss treatment that Averse: 57%, Neutral:
17%, Seeking: 25% from a sample of college students.
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Caldas (4.4%) and Antioquia (2.1%). Differences across regions were statistically signif-361

icant for Cundinamarca versus Antioquia (Pearson’s χ2: 19.4, p-val: 0.00), and between362

Cundinamarca versus Caldas (Pearson’s χ2: 3.38, p-val: 0.07). 12
363

Table 3: Summary statistics

mean S.D. min max
Panel A. Animal level, n=877
Ketosis prevalence (%) 4.26 20.22 0.00 100.00
BHB (mml/L) 0.60 0.34 0.00 4.40
Weeks since calving 3.25 1.90 0.14 8.86
Body conditioning score (1-5) 2.77 0.35 2.00 4.00
Parity (#) 3.11 1.99 1.00 12.00
Calf sex (male = 1) 0.49 0.50 0.00 1.00
Calf death (yes = 1) 0.04 0.19 0.00 1.00
Holstein (yes=1) 0.96 0.19 0.00 1.00

Panel B. Farm level, n=55
Mean production (kg/cow/day) 20.47 4.04 11.00 36.00
Fat in milk (%) 3.54 0.26 3.02 4.06
Concentrate share - fresh period (%) 19.50 19.51 0.00 80.00
Feeding frequency (times in a day) 3.90 1.06 2.00 6.00
Nutritionist visit (%) 85.45 35.58 0.00 100.00
Kikuyu pasture (%) 86.25 22.53 0.00 100.00
Stocking (animals/ha) 3.33 2.68 0.30 12.74
Distance to milking parlor (Km) 0.39 0.33 0.00 1.20
Fresh-cows separation (yes = 1) 0.29 0.45 0.00 1.00
Milking reduction (yes = 1) 0.32 0.47 0.00 1.00

Panel C. Farmer level, n=55
Risk averse (yes=1) 0.65 0.47 0.00 1.00
Age (years) 39.41 13.30 20.00 80.00
Male (yes = 1) 0.82 0.39 0.00 1.00
Manager only (yes = 1) 0.79 0.40 0.00 1.00
Education (years) 12.54 4.48 5.00 18.00
Credit access (yes = 1) 0.51 0.50 0.00 1.00

Other animal-level information shows that on average our sample is composed of primarily364

Holstein cows, more than 21 days after calving, around three previous pregnancies, with a365

mean body condition score (BCS) of 2.8/5.0. The veterinary medicine literature on early366

12It is important to note that previous epidemiological studies of ketosis in Colombia found higher preva-
lence levels of subclinical ketosis, with estimates ranging from 8.3% to 26% during the first six weeks of the
lactation(Villa-Arcila et al., 2017; Brunner et al., 2018; Garzón-Audor and Oliver-Espinosa, 2019).

18



lactation diseases has identified that risk factors for ketosis include increased parity, high367

BCS, Holstein cows, male calves, and other conditions related to the last calving.13368

The second panel of table 3 shows information at the farm level. The average farm in369

our sample is characterized by a pasture-based production system with a daily production of370

about 20.4kg per cow/day, 3.5% fat in milk, and an estimated stocking density of about three371

cows per hectare. Values for a conventional dairy farm in Colombia respectively are 12 to 14372

kg/day, 3.5%, and 1 to 2 cows/ha on average (Carulla and Ortega, 2016), which are slightly373

different from our sample. These differences can be explained by the fact that relatively small,374

less professionally managed were excluded in our study. By design, our sample included farms375

with a large-enough number of cows, and good management information to properly identify376

the cows to be tested for Ketosis.377

Other farm-level variables include the percentage concentrate in cows’ diet in the fresh378

period (the first weeks after calving), the feeding frequency (including pasture and grain),379

whether milking is gradually reduced before the next lactation (milk-reduction before dry-380

off), whether lactating cows are managed separately from the rest of the heard (fresh-cows381

separation), the number of animals per hectare (stocking density), and the daily distance382

cows walk to the milking parlor.383

Lastly, the bottom panel of table 3 reports on farmers’ information. Our sample includes384

mainly middle-aged male farmers with high-school education on average. Other variables385

include whether the farmer is the manager but not the owner of the farm and a dummy386

variable that captures farmers’ access to credit (credit cards, input suppliers credit, and387

similar products).388

5 Empirical strategy389

We first focus on the relationship between risk aversion and the prevalence of ketosis. The

basic specification presented in equation (3) relates the independent variable, Pr(Ketosis=1)

13See Garzón-Audor and Oliver-Espinosa (2018) for a review.
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for cow i in farm j, to an indicator variable Aversej that equals one when the manager

of the cow is a risk-averse farmer, zero otherwise. Moreover, the model assumes that a

positive test for ketosis is determined by farm-level production practices, represented by

vector Zj, a set of cow characteristics Xij, and potential differences in the productive and

environmental conditions of the farm’s location, captured by the region fixed effects indicator

Dj. Additional unobserved variability in prevalence levels is captured by the error term ϵij.

Pr(Ketosis=1)ij = α + β1{Aversej=1} + γZj + ηXij +Dj + ϵij (3)

Out objective is to test whether there is a negative and significant association between390

risk aversion and the prevalence of ketosis. Further, we anticipate that if there is an effect391

on prevalence levels of ketosis, a similar effect should be found for BHB estimates since392

higher concentrations increase the likelihood of ketosis to be diagnosed. This is because393

the Ketosis indicator is a function of the BHB blood concentration. Therefore, we use also394

estimate the model in equation 3 using the BHB blood concentration as dependent variables.395

Risk neutrality or risk-seeking behavior must imply that β ≥ 0, so that estimate β̂ is either396

positive or statistically insignificant. Our main hypothesis is that β̂ < 0. By identifying risk397

preferences in equation (3), we can focus on β as our parameter of interest to separate the398

marginal effect of risk aversion from the overall effect of risk factors affecting ketosis.399

Second, we used the experiment and survey data to understand how risk aversion relates400

to the willingness to pay for information. We estimate a linear probability model that401

relates farmers’ decisions during the treatment rounds to their risk profile (see equation 4).402

For each risk level, the independent variable is a binary variable WTPj that equals one403

when farmers decide to pay for information about their cows’ health status. In addition, we404

include an indicator variable Aversej = 1 to identify when farmer j is risk-averse. Also, we405

control for farmers’ socioeconomic characteristics, C, that have been found in risk elicitation406

literature to be important to explain behavior under risk. These include income, age, gender,407
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education, and access to formal credit.408

Pr(WTP = 1)j = θ0 + θ11{Aversej=1} + θ2Cj + ϵj (4)

Additionally, we study differences in management practices between risk-averse and non-409

risk-averse farmers We consider management practices that can affect cows’ health status,410

including risk factors affecting the prevalence of ketosis. Since the nutritional management411

of cows affects their health status, we primarily focus on feeding practices and inputs. Im-412

portantly, these variables are directly related to our measure of risk aversion since the risk413

profiles are based on the farmers’ decisions about feeding inputs.414

A critical challenge for identification is the adequate control for observed and unobserv-415

able confounders. Given the nature of our data, we cannot control for farm or individual-level416

fixed effects. Instead, we controlled for several confounding factors in our experimental de-417

sign and used a rich set of farm, cow, and individual information. We control for technology418

choices that were identified to have an effect on the health status of cows in general and419

the likelihood of ketosis in particular. For instance, farmers could choose a pasture vari-420

ety with higher nutritional content (Kolver, 2003; Compton et al., 2015; Garro et al., 2013;421

Daros et al., 2017; Wilkinson et al., 2019). In our sample, a single variety was predominant,422

Kikuyu pasture (pennisetum clandestinum), representing the largest percentage of pasture423

on the farm (see table 3). Also, farmers could gradually reduce the milking frequency be-424

fore the dry-off or increase the feeding frequency to reduce the energetic demand of cows425

(González et al., 2008; Sahar et al., 2020; Yepes et al., 2020). In addition, a farmer may426

choose specific breeds of cows that are less prone to metabolic diseases. By design, we only427

included in our sample farms with Holstein cows and Holstein-crosses to reduce the potential428

variability across breeds. Moreover, we control for the cow’s breed in our estimation.429

Another relevant concern might be that the prevalence of ketosis is low. A large per-430

centage of cows test negative for ketosis at the defined cut-off of 1.2 mmol/L BHB, leading431

to a relatively small number of ones in the dependent variable we use for the prevalence of432
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the disease. Given the sample size, this makes the positive cases of ketosis a rare event in433

a statistical sense. For this reason, we consider alternative estimation methods for equation434

(3) to check the sensitivity of the estimates due to model selection and to correct for the435

potential finite sample bias in the presence of rare events. In particular, we estimated ad-436

ditional models using the standard procedure and another using the Penalized Maximum437

Likelihood Estimation proposed by Firth (1993).438

6 Results439

6.1 Disease prevalence440

Table 4 reports the estimated coefficients of risk aversion on the prevalence of ketosis. We441

find a negative and significant coefficient for the risk aversion indicator variable, a result442

that is robust to all specifications. Column (5) in table 4 reports results for the model with443

all control variables and region fixed-effects, indicating that cows managed by risk-averse444

farmers are 3.7 percent points less likely to experience ketosis compared to farmers with445

other risk profiles (results for all variables are reported in A1 in the appendix). Coefficients446

in other models range from 3% to 5%, depending on the specification. Notably, the coefficient447

for risk aversion increases when farm-level controls on practices are included, maintaining448

its sign and statistical significance. In addition, results for the BHB blood concentration449

show a similar set of negative coefficients for the risk aversion variable (see table A2 in the450

appendix).451

What are then the potential pathways through which risk aversion affects the likelihood452

of ketosis? To address this question, we study differences across farmers’ risk profiles using453

two sets of data: experimental evidence on willingness to pay for information about cows’454

health status, and observational data on farm practices.455
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Table 4: Regression results of risk aversion on ketosis prevalence

Ketosis prevalence
Covariates (1) (2) (3) (4) (5)

Risk averse -0.033* -0.043** -0.038* -0.050** -0.038**
(0.019) (0.017) (0.020) (0.019) (0.016)

Constant 0.066*** 0.074 0.071 0.041 0.101
(0.017) (0.055) (0.100) (0.112) (0.120)

Dependent variable mean 0.043 0.043 0.043 0.043 0.043
Observations 877 877 877 877 877
Farm-level controls no yes no yes yes
Cow-level controls no no yes yes yes
Region fixed effects no no no no yes

Notes: Coefficients estimated using a linear regression models with Pr(ketosis=1) as the
dependent variable. Clustered-Robust standard errors at the farm level in parentheses.
Significance: *** p<0.01, ** p<0.05, * p<0.1

6.2 Willingness to pay for information456

Experimental results show suggest a positive relationship between risk aversion and will-457

ingness to pay for risk-reducing investments comparable to veterinary services or testing458

equipment such as the keto-meter. Table 5 shows results for the linear probability model of459

risk aversion on the willingness to pay for information about the health status of their cows460

(WTP). First, we find a positive coefficient for the risk aversion indicator (column 1), which461

is robust to the inclusion of farmer-level controls (see panel C in table 3). These results462

suggests that risk-averse farmers are more likely to demand information than their non-risk463

averse. Further, the WTP for information increases with risk level.464

However, the estimated coefficients in columns 2 to 5 show that for the risk aversion465

coefficient are only statistically significant for the lowest risk level. In this condition, when466

there is only a 20% probability that the cow is sick, the likelihood that farmers pay for467

cows’ health status in the experiment is about 32 percent points higher for the risk-averse.468

Note that the WTP for information significantly higher in the 50% risk condition, when the469

probability is ambiguous about the presence of the disease.470
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Table 5: Marginal effects of risk aversion on the willingness to pay for information

Pooled Risk=20% Risk=50% Risk=80%
WTP WTP WTP WTP

Covariates (1) (2) (3) (4)

Risk averse 0.204** 0.324** 0.051 0.237
(0.096) (0.119) (0.187) (0.167)

Risk 50% 0.254***
(0.092)

Risk 80% 0.127
(0.091)

Constant 0.585** 0.033 1.339*** 0.764**
(0.839) (0.448) (0.414) (0.341)

Dependent variable mean 0.37 0.37 0.37 0.37
Individual-level controls yes yes yes yes
Observations 165 55 55 55
R2 0.13 0.14 0.13 0.29

Notes: this table reports coefficients from a linear probability model with Pr(WTP=1)
as the dependent variable. Individual-level controls include age, gender, education level,
and access to formal credit, and income. Robust standard errors in parentheses. Signif-
icance: *** p<0.01, ** p<0.05, * p<0.1

A possible explanation is that there exists an upper limit of risk for which more infor-471

mation on cows’ health status is no longer valuable for the risk averse. In a scenario where472

the more likely outcome is that cows are sick, farmers may see a very high (or very low)473

prevalence of the disease as a strong signal that makes diagnostic information irrelevant to474

reduce risk when managing cows’ health. For instance, farmers may limit pre-event action475

if they already expect a high enough number of sick cows in a given herd. This is consistent476

with cases when farmers may prioritize treatment over prevention. Evidence in dairy farming477

suggests that preparedness against vector-transmitted disease is expected to decrease with478

lower probability of disease introduction, larger spreads, and when post-event strategies are479

more effective relative to pre-event action (Elbakidze and McCarl, 2006).480
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6.3 Pasture-based management481

Only a few practices predict the prevalence of the disease in our sample. We find that482

the higher the distance and the higher the parity number, the more likely is a dairy cow483

to experience ketosis (see column 1 of table A3 in the appendix). In line with previous484

research, the pressure on energetic demand caused by the stocking density and the daily485

traveled distance to the milking parlor Scott et al. (2014); Neave et al. (2021), as well as486

cow’s age and reproductive history (Seifi et al., 2011; McArt et al., 2013; Benedet et al., 2019;487

Pralle et al., 2020) are contributing factors of metabolic diseases. We also find a negative and488

significant coefficient for milking reduction before dry-off in all specifications, which seems489

to improve cows’ health despite their cost in terms of milk production.490

In addition, we find no systematic differences in farm practices between risk-averse and491

non-risk-averse farms using simple statistical tests (see table 6). The only exception is492

the distance to the milking parlor, which on average is almost double for risk-averse farms493

(difference in means p-value = 0.009). In any case, small sample size issues make it difficult494

to detect true differences in management.495

Table 6: Differences in farm practices between risk and non-risk averse

Non-risk averse Risk averse Diff.
Practices mean mean p-value
Concentrates share (%) 19.15 19.69 0.93
Feeding frequency (times) 3.94 3.88 0.70
Nutritionist visit (yes=1) 0.84 0.86 0.85
Kikuyo pasture (%) 86.72 85.01 0.29
Stocking density (herd size/area) 3.53 3.21 0.65
Distance to milking parlor (Km) 0.23 0.48 0.01
Fresh cows separation (yes = 1) 0.21 0.33 0.35
Milking reduction (yes = 1) 0.42 0.28 0.29

Notes: P-values calculated using two-tail differences in means tests.

Nevertheless, there could be heterogeneous effects of farm practices on ketosis between496

these types of management, which would suggest that risk aversion can affect ketosis in dif-497

ferent ways depending on the distribution of each practice. For example, plenty of evidence498
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suggests that concentrates may improve energy balance in pasture-based dairy cattle, reduc-499

ing the risk of developing ketosis (Bargo et al., 2003; Pulido and Leaver, 2003; Wales et al.,500

2009; Hills et al., 2015; Auldist et al., 2016; Garćıa-Roche et al., 2021; Merino et al., 2021).501

In our sample we observe no differences in concentrates means (p-value = 0.93). Also,502

regression results show negative coefficients of concentrates share on ketosis and BHB (see503

column 5 in tables A1 and A2), although not all are statistical significant. However, more504

than half of ketosis cases were detected in farms with zero concentrates in cows’ diet. Further,505

figure 3 shows that the distribution of feed concentrate shares is more concentrated around506

zero and lower values in non-risk-averse farms. In contrast, the right-hand tail of distribution507

takes maximum values 30% higher than in non-risk-averse farms. The Kolmogorov-Smirnov508

test confirms that the two distribution are statistically different (p-value = 0.000).14509

Figure 3: Distribution of concentrate shares
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Notes: Histogram of the share of concentrates in cows diet during the fresh period (after calving)
for risk averse farmers (panel A) and non-risk averse farmers (panel B). Black lines indicates the
kernel density calculated using a kernel’s half-width of 0.08. P-value for the Kolmogorov-Smirnov
equality of distribution test reported.

14When we replicate the preferred specification but restrict the sample to farms that use some positive
share of feed concentrates in cows diets, the coefficient of risk aversion is still negative but in lower magnitude
(see column 3 table A3). For the restricted sample of farms with only zero concentrate shares, the magnitude
of the coefficient for risk aversion is double compared to the unrestricted sample.
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To better understand how management affects the prevalence of ketosis via risk prefer-510

ences we study the heterogeneous effects. Table 7 reports regression estimates for several511

farm practices on ketosis. Column 1 shows the main specification including animal-level512

controls and region fixed effects. In columns 2 and 3 we split the sample between risk and513

non-risk averse farmers. We find three types of results. First, we observe practices with the514

same results across the three specifications, showing that risk aversion does not mediates in515

their effect on ketosis. This is the case of Milking reduction at dry-off, which is negative and516

significant across all models.517

Second, there are practices that only seem to matter for only risk averse farmers. In518

particular, we find a negative and significant coefficient for concentrates shares. Related to519

this we also find that the coefficient for nutritionist visit indicator variable is positive and520

significant, which seems to suggest a higher likelihood of ketosis. However, nutritionist visits521

and concentrates are highly correlated. The same of concentrates is 20% on average for farms522

visited by nutritionist, which significantly higher than the 11% shares in farms that do not523

hire nutritionist to formulate diets. In the second group of results, we also find positive and524

significant coefficients in the risk-averse sample for stocking density and distance to parlor.525

As discussed earlier, this distance is double for farms managed by risk-averse farmers (as526

well as farm size), so it makes sense that in this sub-sample we observe the negative effects527

of larger distances on cows health status. Similarly, stocking is also correlated with other528

practices, as a higher stocking may require a higher concentrate share, and a larger farm529

implies less herd density per pasture.530

Third, we observe coefficients that cancel out when estimating the model with the fulll531

sample. Most of the effects mentioned before yield non-significant coefficients when both532

samples are pooled (see column 1). Even large and significant effects in the non-risk averse533

sample, as in the case of the share of the Kikuyu pasture variety that has a negative and534

significant coefficient in column 2, it is no longer significant for the full sample, as that effect535

is null among the risk averse. The net effects is still negative but statistically different than536
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zero.537

It is important to highlight that these results are not conclusive in the sense that we538

cannot reject alternative explanations to fully support a causal effect of risk preferences539

on ketosis via farm practices. Instead, they suggest that risk aversion matters mediates in540

how farm practices affect to ketosis. Another possibility is that these practices might be541

risk-reducing but not of the self-protection type. Instead, they may help self-insure farmers542

against the potential losses caused by ketosis, which we do not estimate because production543

data at the animal-level was not available in most farms in our sample. This is a limitation544

of our study, considering that most pasture-based farmers in developing countries do not545

track productivity at such granular level.546

Other alternative might be that changes in risk levels do not influence farmers. In other547

words, the risk that farmers face does not trigger a managerial response that correspond548

to a specific set of preferences for risk. According to our framework, this means that the549

expected income effects are null relative to non-risk averse. This could be because the risk550

involved is not significant enough (a very low prevalence of the disease) or that farmers are551

unable to properly determine the risk level (diagnostic problems).552

6.4 Limitations and additional robustness checks553

While our findings are valuable to our understanding of how risk preferences affect farmers’554

technology choices, our study is limited by the nature of the problem and the available data.555

Here, we are not trying to establish the risk factors of ketosis, which requires epidemiological556

research beyond the scope of this paper. Instead, our goal is to understand how risk aversion557

may affect the prevalence of ketosis via management practices. Yet, the controls available in558

the data may not capture the entire variation in outcomes, such that potential unobservable559

characteristics correlated with risk aversion may affect the occurrence of ketosis, which can560

lead to an omitted variable bias.561

To address this problem and given that we cannot control for farm-level fixed effects, we562
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Table 7: Heterogeneous effects and risk aversion

Pooled Non risk-averse Risk-averse
farms farms

(1) (2) (3)
Covariates ketosis ketosis ketosis

Risk averse -0.038**
(0.016)

Concentrates share -0.031 0.038 -0.073*
(0.033) (0.105) (0.037)

Feeding frequency -0.008 -0.011 0.001
(0.009) (0.019) (0.013)

Kikuyo pasture -0.045 -0.253*** 0.019
(0.040) (0.087) (0.042)

Stocking density 0.002 -0.005 0.009***
(0.003) (0.003) (0.003)

Distance to parlor 0.067*** 0.026 0.089***
(0.023) (0.070) (0.021)

Fresh cows separation 0.003 -0.019 0.019
(0.015) (0.031) (0.013)

Milking reduction at dry-off -0.051*** -0.079*** -0.050***
(0.012) (0.019) (0.014)

Nutricionist visit 0.032 -0.023 0.081***
(0.023) (0.042) (0.028)

Constant 0.067 0.136 -0.040
(0.117) (0.274) (0.132)

Dependent variable mean 0.043 0.067 0.033
Observations 877 256 621
R-squared 0.054 0.065 0.074
Region Fixed Effects yes yes yes
Animal-level controls yes yes yes

Notes: Estimates for marginal effects reported. Coefficients estimated using linear
probability regression models with Pr(ketosis=1) as the dependent variable. Clus-
tered standard errors at the farm level in parentheses. Significance: *** p<0.01, **
p<0.05, * p<0.1

included only certain breeds of cows and types of farms in our sample to minimize potential563

confounding factors by design. Further, we used a biological indicator used as an objective564

way to determine the prevalence of ketosis. Finally, we control for a rich set of farm and cow565
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level covariates that were selected based on evidence from veterinary science regarding the566

determinants of ketosis. Nevertheless, further analysis is needed to address this limitation567

when identifying causal effects of farmers’ preferences on farm-level outcomes.568

An important concern is whether the magnitude of the omitted variable bias would569

drastically affect our results. We follow Oster (2017) procedure to correct for the potential570

bias caused by selection on observables. We assume an empirical value for Rmax of 1.3 times571

the R2 of the model with controls, and compare models in columns (1) and (5) from table572

4. We find a δ̂ = 7.2, which suggests that unobservables would need to be seven times573

more important than our controls to result in a coefficient for the risk aversion variable574

that is statistically not different from zero. The estimated coefficient for the risk aversion575

indicator variable when equally importance is assumed (δ = 1) is -0.041, which is similar to576

the estimates reported in table 4.577

Finally, we conducted additional robustness checks for the prevalence of ketosis model.578

We focus on the model specification with all controls and fixed effects to check if the selection579

of the estimation model affects our results, in particular by correcting for potential bias580

caused by the low prevalence of ketosis in our sample (appendix table A4 in the appendix).581

We do not observe significant differences in the indicator variable of risk aversion due to582

the estimation method. Results show marginal effects ranging between -3.8% (for the probit583

model) and -4.9% (for the penalized maximum likelihood logit model). We conclude that584

the main results are robust to estimation, even when corrected for potential bias caused by585

the sample’s relatively few positive cases of ketosis. So, we reported all main results using586

the linear probability model as it provides the most conservative estimate for the coefficient587

for risk aversion.588
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7 Discussion589

Risk preferences can shape farm management in significant ways. The sources of uncertainty590

in dairy farming include price and yield volatility (Neyhard et al., 2013; Schaper et al.,591

2010), production risks (Flaten et al., 2005; Meuwissen et al., 2001), and climate change592

risk (Amamou et al., 2018). A handful of studies investigate farmers’ attitudes toward these593

risks in dairy farming, showing differences in farming practices across different risk profiles of594

farm managers. For instance, some degree of risk aversion explains differences in the use of595

disease control practices (vaccination, prevention, and hygiene), concentrate use, veterinarian596

consulting, herd size, and public programs participation (Bishu et al., 2016; Bardhan et al.,597

2006; Tauer, 1986). However, the impact of these differences on dairy farming is yet to be598

fully understood, and these effects may compound if most of the dairy farmers are risk-averse,599

as the evidence suggests (Belhenniche et al., 2009; Tauer, 1986).600

In this paper, we study the role of risk aversion in pasture-based dairy farms, focusing on601

the prevalence of metabolic diseases in cows as an outcome of farmers’ technology choices. We602

argue that risk-reducing incentives can promote investments in risk-reducing management603

in dairy farming. When facing uncertain but preventable productivity shocks, such as the604

reduction of milk production or reproductive performance of cows caused by diseases such as605

ketosis, farmers have incentives to adopt practices that reduce their exposure to these events.606

However, not all farmers are willing to pay for this risk reduction. Our results indicate that607

farms with risk-averse managers exhibit a lower prevalence of ketosis, even after controlling608

for farm practices and cows’ characteristics.609

Moreover, our results indicate a lower risk level in farms with risk-averse managers.610

Our experimental results show that risk aversion is correlated with willingness to pay for611

information about cows’ health status, which is comparable to veterinary consultation or the612

use of disease diagnostic tools such as the keto-meter, which is the testing device we used on613

the field to determine the presence of ketosis. If risk aversion leads to a willingness to pay614

for such risk reductions, then a potential demand for risk-reducing technologies may exist.615
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Recent evidence shows incentives to adopt post-harvesting practices, improved varieties, and616

electronic devices can help farmers reduce downside risks, especially among the risk-averse617

(Emerick et al., 2016; Shimamoto et al., 2017; Asravor, 2018; Crentsil et al., 2020). This618

demand for risk-reducing practices and inputs compares to cases documenting an otherwise619

negative effect of risk aversion on technology adoption.620

These results suggest an important link between risk preferences and risk-reducing farm621

management. Our experimental design is based on the economic trade-off between the down-622

side risks versus the cost of better farm management. In pasture-based dairies in low-income623

countries, this tension is often resolved in favor of management strategies that sacrifice cows’624

health and, as a result, dairy farms productivity. In this context, risk preferences are essential625

but mostly unobservable economic primitives affecting farm management, and our results626

highlight the importance of using experimental economics methods to study problems when627

no direct observation is available or when randomization can not be feasibly implemented628

in the field. Related research combines economic experiments and field observations in de-629

veloping countries to test, for instance, theoretical predictions about social, other-regarding,630

and time preferences (Fehr and Leibbrandt, 2011; Carpenter and Seki, 2011). In our experi-631

ment, risk-averse individuals systematically chose higher feed quality options at the expense632

of lower expected returns. Using survey data, we also find show lower ketosis prevalence in633

farms that use concentrates in dairy cows’ diet, which is especially relevant for pasture-based634

production systems where these and other nutritional supplements are mostly underutilized.635

In addition, the identification of farmers’ risk profiles is relevant for policy targeting636

and promoting agricultural innovations. Our results indicate that farmers that exhibit risk-637

neutral or risk-seeking behavior may be willing to endure higher levels of prevalence of638

diseases to avoid the cost of risk-reducing investments. Therefore, policies aiming at im-639

proving cattle health should consider farmers’ risk preferences and target those farmers who640

have incentives to adopt risk-reducing technologies, especially when no other mechanisms641

are available such as insurance. For example, several government programs for dairy and642
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livestock farming in Colombia include investments in vaccines, testing, and animal control643

to prevent the spread of viruses such as the one causing the foot-and-mouth disease. Given644

the steep potential losses of viral diseases, many of which are common in dairy and livestock645

production, understanding the heterogeneity of farmers’ risk preferences and how they shape646

farmers’ technology choices is crucial to improving the efficacy of such policies.647
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Appendix838

Figure A1: Risk profile classification based on lottery choices
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Notes: The x-axis is the Constant Relative Risk Aversion (CRRA) parameter r. The y-axis is the expected
utility given probability p. The left panel shows the expected utility of three lotteries individually (H, M,
L). The right panel shows their intersection points and the maximum expected utility of all three gambles
as the envelope curve shown with a thick black line. Lottery H (L) provides a higher expected payoff for
higher (lower) values of r, whereas lottery M yields the highest payoff for r in between lotteries H and L.
For instance, to the right of point r1 in figure 1, the values of the implied CRRA indicate that lottery L
generates a higher expected utility than lotteries H and L. Similarly, between values r1 and r2, lottery M
provides the highest expected utility of all three gambles.

42



Table A1: Ketosis prevalence: regression results

(1) (2) (3) (4) (5)
Covariates ketosis ketosis ketosis ketosis ketosis

Risk averse -0.033* -0.043** -0.038* -0.050** -0.038**
(0.019) (0.017) (0.020) (0.019) (0.016)

Concentrates share 0.012 0.012 -0.031
(0.040) (0.044) (0.033)

Feeding frequency 0.012 0.014* -0.008
(0.008) (0.008) (0.009)

Kikuyo pasture -0.095** -0.081** -0.045
(0.037) (0.038) (0.040)

Fresh cows separation -0.007 -0.008 0.003
(0.016) (0.016) (0.015)

Stocking density 0.003 0.004 0.002
(0.004) (0.004) (0.003)

Distance to parlor 0.041 0.046 0.067***
(0.028) (0.028) (0.023)

Milking reduction at dry-off -0.031** -0.029** -0.051***
(0.013) (0.014) (0.012)

Nutricionist 0.026 0.028 0.032
(0.020) (0.022) (0.023)

Days in Milk -0.002 0.001 0.002
(0.003) (0.003) (0.003)

BCS 0.017 0.018 0.022
(0.025) (0.026) (0.026)

Parity 0.008** 0.008** 0.009**
(0.004) (0.004) (0.004)

Male calf 0.006 0.006 0.006
(0.013) (0.013) (0.013)

Calf dead 0.002 -0.006 -0.008
(0.032) (0.033) (0.035)

Holstein cow -0.071 -0.068 -0.060
(0.061) (0.064) (0.061)

Constant 0.066*** 0.062 0.071 0.030 0.067
(0.017) (0.054) (0.100) (0.107) (0.117)

Observations 877 877 877 877 877
R-squared 0.005 0.032 0.016 0.041 0.054
Region Fixed Effects no no no no yes

Notes: Estimates for marginal effects reported. Coefficients estimated using linear probability
regression models with Pr(ketosis=1) as the dependent variable. Clustered standard errors at the
farm level in parentheses. Significance: *** p<0.01, ** p<0.05, * p<0.1
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Table A2: BHB blood concentration: regression results

(1) (2) (3) (4) (5)
Covariates ketosis ketosis ketosis ketosis ketosis

Risk averse -0.052 -0.090** -0.065 -0.108** -0.086**
(0.049) (0.046) (0.052) (0.051) (0.044)

Concentrates share -0.027 -0.022 -0.102
(0.114) (0.118) (0.098)

Feeding frequency 0.011 0.011 -0.051*
(0.019) (0.020) (0.031)

Kikuyo pasture -0.244*** -0.241** -0.208*
(0.094) (0.117) (0.120)

Fresh cows separation -0.015 -0.013 0.001
(0.045) (0.047) (0.048)

Stocking density 0.005 0.006 0.001
(0.008) (0.009) (0.006)

Distance to parlor 0.149** 0.159** 0.181***
(0.063) (0.064) (0.059)

Milking reduction at dry-off -0.040 -0.034 -0.084***
(0.037) (0.038) (0.031)

Nutricionist -0.059 -0.067 -0.084
(0.078) (0.080) (0.071)

Days in Milk -0.003 0.003 0.004
(0.008) (0.007) (0.007)

BCS 0.074 0.088* 0.092*
(0.055) (0.050) (0.050)

Parity 0.021*** 0.023*** 0.026***
(0.008) (0.008) (0.008)

Male calf -0.023 -0.027 -0.026
(0.025) (0.024) (0.025)

Calf dead -0.005 -0.033 -0.034
(0.039) (0.048) (0.052)

Holstein cow -0.152* -0.082 -0.069
(0.085) (0.089) (0.087)

Constant 0.636*** 0.822*** 0.543*** 0.598*** 0.783***
(0.043) (0.130) (0.177) (0.148) (0.203)

Observations 877 877 877 877 877
Region Fixed Effects no no no no yes

Notes: Coefficients estimated using Tobit regression models with BHB blood concentrations as
the dependent variable censored at lower bound of zero (BHB=0). Clustered-Robust standard
errors at the farm level in parentheses. Significance: *** p<0.01, ** p<0.05, * p<0.1
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Table A3: Ketosis prevalence: regression results

Pooled Concentrate Concentrate
share = 0 share > 0

(1) (2) (3)
Covariates ketosis ketosis ketosis

Risk averse -0.038** -0.076** -0.038*
(0.016) (0.032) (0.023)

Concentrates share -0.031 -0.078**
(0.033) (0.035)

Feeding frequency -0.008 0.004 -0.016
(0.009) (0.024) (0.016)

Kikuyo pasture -0.045 0.008 -0.191***
(0.040) (0.046) (0.049)

Fresh cows separation 0.002 -0.010** 0.005
(0.003) (0.004) (0.003)

Stocking density 0.003 -0.002 0.006
(0.015) (0.029) (0.013)

Distance to parlor 0.067*** 0.067 0.066***
(0.023) (0.050) (0.019)

Milking reduction at dry-off -0.051*** -0.043** -0.052**
(0.012) (0.019) (0.021)

Nutricionist 0.032 0.042 0.055**
(0.023) (0.038) (0.025)

Days in Milk 0.002 0.003 0.001
(0.003) (0.005) (0.005)

BCS 0.022 0.033 0.015
(0.026) (0.037) (0.037)

Parity 0.009** 0.007 0.011**
(0.004) (0.007) (0.005)

Male calf 0.006 0.002 0.007
(0.013) (0.022) (0.014)

Calf dead -0.008 -0.042 0.023
(0.035) (0.033) (0.066)

Holstein cow -0.060 -0.070 -0.146
(0.061) (0.076) (0.105)

Constant 0.067 0.006 0.311*
(0.117) (0.176) (0.183)

Observations 877 366 511
R-squared 0.054 0.064 0.081
Region Fixed Effects yes yes yes

Notes: Estimates for marginal effects reported. Coefficients estimated using lin-
ear probability regression models with Pr(ketosis=1) as the dependent variable.
Clustered standard errors at the farm level in parentheses. Significance: ***
p<0.01, ** p<0.05, * p<0.1
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Table A4: Robustness Check: Model selection and rare-events correction bias

(1) (2) (3) (4)
Covariates ketosis ketosis ketosis ketosis

Risk averse -0.044** -0.038** -0.045** -0.049*
(0.019) (0.016) (0.019) (0.027)

Concentrates share -0.013 -0.021 -0.014 -0.013
(0.036) (0.032) (0.035) (0.046)

Feeding frequency -0.003 -0.010 -0.004 -0.003
(0.009) (0.009) (0.009) (0.015)

Kikuyu pasture share -0.044 -0.050 -0.050* -0.046
(0.029) (0.039) (0.029) (0.042)

Stocking density 0.002 0.001 0.002 0.003
(0.002) (0.003) (0.002) (0.003)

Distance to parlor 0.050** 0.064*** 0.049** 0.055*
(0.023) (0.023) (0.022) (0.030)

Fresh cows separation -0.009 -0.003 -0.006 -0.009
(0.016) (0.016) (0.014) (0.019)

Milking reduction at dry-off -0.044*** -0.052*** -0.045*** -0.048**
(0.012) (0.012) (0.012) (0.020)

Days in Milk 0.003 0.002 0.003 0.003
(0.003) (0.003) (0.003) (0.004)

BCS 0.022 0.022 0.018 0.025
(0.022) (0.026) (0.022) (0.022)

Parity 0.008** 0.009** 0.008** 0.009**
(0.003) (0.004) (0.003) (0.004)

Male calf 0.012 0.005 0.013 0.013
(0.013) (0.012) (0.013) (0.016)

Calf dead 0.000 -0.007 0.008 0.015
(0.045) (0.036) (0.042) (0.041)

Holstein -0.044 -0.057 -0.041 -0.053
(0.028) (0.062) (0.032) (0.032)

Observations 877 877 877 877
Region Fixed Effects yes yes yes yes

Notes: (1) Logit model, (2) OLS, (3) Probit model, (4) Penalized Maximum Likelihood
Estimation proposed by Firth (1993). Clustered-Robust standard errors at the farm
level in parentheses for models 1 to 3. The dependent variable is Pr(ketosis=1) and
the baseline groups are risk-neutral and risk-seeking profiles. Significance: *** p<0.01,
** p<0.05, * p<0.1
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